
FeatureHub: Towards collaborative data science
Micah J. Smith

MIT, LIDS
Cambridge, MA

micahs@mit.edu

Roy Wedge
MIT, LIDS

Cambridge, MA
rwedge@mit.edu

Kalyan Veeramachaneni
MIT, LIDS

Cambridge, MA
kalyan@csail.mit.edu

Abstract—Feature engineering is a critical step in a successful
data science pipeline. This step, in which raw variables are
transformed into features ready for inclusion in a machine
learning model, can be one of the most challenging aspects of
a data science effort. We propose a new paradigm for feature
engineering in a collaborative framework and instantiate this
idea in a platform, FeatureHub. In our approach, independent
data scientists collaborate on a feature engineering task, view-
ing and discussing each others’ features in real-time. Feature
engineering source code created by independent data scientists
is then integrated into a single predictive machine learning
model. Our platform includes an automated machine learning
backend which abstracts model training, selection, and tuning,
allowing users to focus on feature engineering while still receiving
immediate feedback on the performance of their features. We use
a tightly-integrated forum, native feature discovery APIs, and
targeted compensation mechanisms to facilitate and incentivize
collaboration among data scientists. This approach can reduce the
redundancy from independent or competitive data scientists while
decreasing time to task completion. In experimental results, au-
tomatically generated models using crowdsourced features show
performance within 0.03 or 0.05 points of winning submissions,
with minimal human oversight.

I. INTRODUCTION

As organizations enjoy a growing ability to store, process
and retrieve recorded data, many seek mechanisms that will
help them derive value from these data stores. Such stores may
include clickstreams from customer interactions with online or
digital platforms, signals captured by wearables, or data from
complex interconnected systems like on-demand car services
or transit networks. Organizations are typically interested in
using this data to predict outcomes in order to personalize
customer experiences, streamline existing systems, and make
day-to-day life better and smoother.

To build predictive models that enable these goals, data
scientists engage in a rather lengthy process of ideating and
writing scripts to extract explanatory features from the data,
in a process called feature engineering. These features are
measurable quantities that describe each entity. For example, in
an online learning platform, quantities that describe a learner’s
interactions include the amount of time the learner spent on the
platform during one particular week, the number of visits she
made to the website, the number of problems she attempted,
and so on. When attempting to solve a particular prediction
problem, a small, easily-interpretable subset of features may
prove to be highly predictive of the outcome. For example, the
average pre-deadline submission time is highly predictive of a
MOOC student’s stopout [1]. To identify and extract these

features requires human intuition, domain expertise, sound
statistical understanding, and specialized programming ability.
Successful practitioners contend that feature engineering is one
of the most challenging aspects of a data science task, and that
the features themselves often determine whether a learning
algorithm performs well or poorly [2], [3].

Of the different steps involved in predictive modeling,
we argue that feature engineering is most susceptible to a
collaborative approach — whether within an in-house data
science team or as a crowdsourced modeling effort. Ideation
by multiple people with different perspectives, intuition, and
experiences is likely to yield a more diverse and predictive set
of features. Then, implementing these features in code can be
done in parallel, as long as well-designed abstractions are in
place to ensure that the features can be combined in a single
framework. On the other hand, one expects that preprocessing
or modeling be characterized by either diminishing returns to
simultaneous work or redundant work from independent data
scientists, as these tasks typically require a single end-to-end
solution and cannot be trivially parallelized.

Despite the benefits of a collaborative model, no system
currently exists to enable it. The advances and successes of
collaborative models in software development, such as version
control systems and pair programming, motivates us to create
such a system for feature engineering. Such a system will be
distinguished by the ability to parallelize feature engineering
across people and features in real-time and integrate contribu-
tions into a single modeling solution.

To build such a system, we must:

• break down the data science process into well-defined
steps,

• provide scaffolds such that data scientists can focus on
the generation of features,

• provide automated methods for the steps that are not
feature engineering, and

• provide the functionality to view, merge, and evaluate
combined efforts.

In this paper, we present FeatureHub1, our first effort
towards a collaborative feature engineering platform. With this
platform, multiple users are able to write scripts for feature
extraction, and to request an evaluation of their proposed
features. The platform then aggregates features from multiple

1FeatureHub is available at https://github.com/HDI-Project/FeatureHub.

users, and automatically builds a machine learning model for
the problem at hand.
Our contributions through this paper are as follows:

1) Propose a new approach to collaborative data science
efforts, in which a skilled crowd of data scientists
focuses creative effort on writing code to perform feature
engineering.

2) Architect and develop a cloud platform to instantiate
this approach, in the process developing scaffolding that
allows us to safely and robustly integrate heterogeneous
source code into a single predictive machine learning
model.

3) Present experimental results that show that crowd-
generated features with an automatically trained predic-
tive model can compete against expert data scientists.

The rest of the paper is organized as follows. Section II
describes a typical data science process, and how FeatureHub
fits into such a workflow. Sections III and IV provide details
on the platform and software architecture. In Section V, we
present our experimental setup for user testing, in which
crowdsourced data scientist workers work with real-world
datasets. We discuss our results in Section VI. Section VII
describes related work in the context of our contributions.
Finally, Section VIII concludes.

II. OVERVIEW

In this section, we motivate the use of FeatureHub for
collaboration on a prediction problem. Consider an example
of predicting to which country users of the home rental site
Airbnb will travel [4]. The problem includes background
information and a dataset, in relational format, containing
information on users, their interactions with the Airbnb web-
site, and their potential destinations. Data scientists are asked
to make predictions such that their five most highly ranked
destinations match the actual destination of each user as
closely as possible. (This dataset is described in more detail
in Section V.) Under the approach facilitated by FeatureHub,
the coordinator first prepares the prediction problem for feature
engineering by taking several steps. She deploys a FeatureHub
instance or uses an already-running system. She uploads the
dataset and problem metadata to the server, and then performs
some minimal cleaning and preprocessing to prepare the
dataset for use in feature engineering. This includes identifying
the users table as containing the entities instances, moving
the target country_destination column into a separate
table, splitting the data into a training and validation set, and
more.

The coordinator steps back and the data scientists log in.
On the platform, they can read background information about
the problem, load the dataset, and conduct exploratory data
analysis and visualization. When they are familiar with the
problem and the dataset, they begin writing features. One data
scientist may use her intuition about what aspects of countries
are most appealing to travelers, and write a set of features
that encode whether the user speaks the language spoken in
different destinations. Another data scientist may look for

patterns hidden deep within users’ clickstream interactions
with the Airbnb site, and write a feature that encodes the
number of actions taken by a user in their most recent session.
Once these users have written their features, FeatureHub auto-
matically builds a simple machine learning model on training
data using each feature, and reports important metrics to the
data scientists in real-time. If the predictive performance of a
feature meets expectations, the feature can be submitted and
“registered” to a feature database, at which point performance
on the unseen test set is also assessed. Though these data
scientists are looking for signal in different places, their
work can be combined together easily within FeatureHub’s
scaffolding. They may be following their ideas in isolation, or
using integrated collaboration and discussion tools to split up
work and exchange ideas.

At this point in a typical data science workflow, data scien-
tists working independently might have accumulated several
features, and, having spent much time on preparing a working
environment and cleaning data, would be anxious to test
the performance of their model. They might specify several
machine learning models in order to get a sense of baseline
performance and compute cross-validated metrics. As they
continue ideating and doing feature engineering, they might
take successively longer pauses to focus on model training and
selection. However, using FeatureHub, individual workers can
focus their creative efforts entirely on writing features while
the system takes care of evaluating performance.

Meanwhile, the coordinator is monitoring the progress of
workers. Each time they register a new feature, a model is
selected and trained completely automatically and the per-
formance is reported to the coordinator. After three days of
feature engineering, the coordinator finds that the model has
crossed a suitable threshold of performance for her business
purpose. She notifies the data scientists that the feature engi-
neering has concluded, and they move on to a new task.

III. FEATUREHUB WORKFLOW

In this section, we discuss a typical FeatureHub workflow in
detail and describe how both coordinators and feature creators
interact with the platform. The workflow is divided into
three phases: LAUNCH, CREATE and COMBINE. Coordinators
execute LAUNCH and COMBINE, and feature creators interact
with the platform in the CREATE phase.

A. LAUNCH

In the Launch phase, a problem coordinator initializes a
FeatureHub problem. The coordinator starts with a prediction
problem that they want to solve, along with a dataset in
relational format. Next, they perform preprocessing on the
dataset to extract important metadata, including the problem
type, the target error metric used to evaluate solutions, and
the URLs and names of data tables. The coordinator also has
the option to pre-extract a set of basic features that can be
used to initialize the machine learning models. Often, these
are features that require the most minimal and obvious trans-
formations, such as one-hot encodings of categorical variables

Fig. 1. Overview of FeatureHub workflow. A coordinator receives the problem to be solved, and associated data. She prepares the data and does the necessary
preprocessing using different functions available. Then, the platform is launched with the given problem and dataset. Data scientists log in, interact with the
data, and write features. The feature scripts are stored in a database along with meta information. Finally, the coordinator automatically combines multiple
features and generates a machine learning model solution.

or conversions of string-encoded dates to timestamps. In fact,
this entire step could be automated using existing frameworks.
Finally, in order to onboard workers, the coordinator prepares
a description of the prediction problem, the data tables and
their primary key-foreign key relationships, and details of the
pre-extracted features.

This requires that all relevant tables are available from the
outset. One might argue that a key contribution of a talented
feature engineer may be to ingest and merge previously-
unknown, external data sources that are relevant to the prob-
lem at hand. For our purposes, we include this in the data
preprocessing step.

B. CREATE

In the Create phase, data scientists log into a server using
credentials provided by the coordinator. Their working envi-
ronment is the Jupyter Notebook, a widely used interactive
document that contains explanatory text, live code, and inline
visualizations.

Load and explore: Notebooks for each problem contain
detailed problem information provided by the coordinator, as
in Section III-A. In this self-contained environment, users have
all of the information they need to understand the problem
and engage with the available data. The environment also
comes pre-loaded with all of the packages users require for
data science and feature engineering, including the FeatureHub
client library. After reading through the problem setup, users
import a FeatureHub client, which provides a minimal but
powerful set of methods for interacting with the feature
engineering process (see Table I).

Data scientists then load the data into their workspace
by calling get_dataset. This populates an object that
allows access to, and provides metadata for, each table in the
relational dataset. Users can then explore the dataset using all
of the familiar and powerful features of the Jupyter Notebook.

Write features:
We ask workers to observe a basic scaffolding of their

source code when they write new features, to allow us to

1 def hi_lo_age(dataset):
2 """Whether users are older than 30 years"""
3 from sklearn.preprocessing import binarize
4 threshold = 30
5 return binarize(dataset["users"]["age"]
6 .values.reshape(-1,1), threshold)

Fig. 2. A simple feature. The input parameter (here, dataset) is an object
with a mapping of table names to DataFrame objects. This function imports
external packages within its body and returns a single column of values.

standardize the process and vet candidate features. This setup
is crucial in allowing us to safely and robustly combine source
code of varying quality.

In this scaffold, a feature maps the problem dataset to a
single column of numbers, where one value is associated
with each entity instance. This format is suitable for many
supervised learning algorithms, which expect a feature matrix
of this form as input. At the outset, this informal definition
seems to disallow categorical features or other “logical fea-
tures” that consist of multiple columns. However, these can
be represented simply as numerical encodings or encoded
one column at a time, in the case of one-hot encodings of
categorical features or lags of time series variables.

In this spirit, we require that a candidate feature be a
Python2 function that

• accepts a single input parameter, dataset, and
• returns a single column of numerical values that con-

tains as many rows as there are entity instances, that is
ordered in the same way as the entity table, and that
can be represented as a tabular data structure such as a
DataFrame.

In order for the feature values to be reproducible, we also
require that features not use variables, functions, or modules
that are defined outside of the function scope, nor external
resources located on the file system or elsewhere. This ensures

2We could easily extend this framework to allow the use of other languages
commonly used in data science, such as R, Julia, or Scala.

Phase Method Functionality

Launch
(Coordinator)

prepare_dataset Prepare the dataset and load it into the FeatureHub interface.

preextract_features Extract simple features.

setup Launch multiple machines on Amazon with JupyterHub installed and the dataset set up.

Create
(Data Scientists)

get_dataset Load the dataset into the workspace.

evaluate Validate and evaluate a candidate feature locally, on training data.

discover_features Discover and filter features in the database that have been added by the user and other workers.

submit Validate and evaluate∗ a candidate feature remotely, on test data, and, if successful, submit it to the
feature database.

Combine
(Coordinator)

extract_features Execute the feature extraction scripts submitted by the data scientists.

learn_model Learn a machine learning model using AutoML.
∗ Though both of these last two methods “evaluate” the performance of the candidate feature, they are named from the perspective of the data scientist’s workflow.

TABLE I
Set of methods for data scientists to interact with FeatureHub.

that the source code defining the feature is sufficient to
reproduce feature values by itself, such that it can be re-
executed on unseen test data. We verify that a feature meets
these requirements during the feature submission process. A
trivial feature that fits this scaffold is shown in Figure 2.

Evaluate and submit: After the user has written a candi-
date feature, they can evaluate its validity and performance
locally on training data using the evaluate command. This
procedure executes the candidate feature on the training dataset
to extract feature values, and builds a feature matrix by
concatenating these values with any pre-extracted features
provided by the problem coordinator. A reference machine
learning model is then fit on this feature matrix, and metrics
of interest are computed via cross-validation and returned to
the user. This procedure serves two purposes. First, it confirms
to the user that the feature has no syntax errors and minimally
satisfies the scaffolding. (As we will see, this by itself is not
sufficient to ensure that the feature values are reproducible.)
Second, it allows them to see how their feature has contributed
to building a machine learning model. If the resulting metrics
are not suitable, the data scientist can continue to develop and
ideate.

Once the user has confirmed the validity of their feature and
is satisfied by its performance, they submit it to the feature
evaluation server using the submit command. In this step,
they are also asked to provide a description of the feature
in natural language. This description serves several valuable
purposes. It allows the feature to be easily labeled and cate-
gorized for in-notebook or forum viewing. It also facilitates a
redundant layer of validation, allowing other data scientists or
problem coordinators to verify that the code as written matches
the idea that the data scientist had in mind. It may even
be used to provide a measure of interpretability of the final
model, because descriptions of the features included in the
final model can be included in output shown to domain experts
or business analysts. At the server, the same steps are repeated,

with slight exceptions. For example, the machine learning
model is fit using the entire training dataset, and metrics are
computed on the test set. The fact that the feature is extracted
in a separate environment with an isolated namespace and a
different filesystem ensures that the resulting feature values
can be reproduced for future use.

If the feature is confirmed to be valid, the feature is then
both registered to the feature database and posted to a forum.
The URL of the forum post is returned to the user, so that
they can begin, view, or participate in a discussion around
their feature.

Facilitating collaboration: Although the data scientist
crowd workers are already collaborating implicitly, in the sense
that their code contributions are combined, FeatureHub also
aims to make this collaboration more explicit. We facilitate
this through several approaches.

First, we provide an in-notebook API method,
discover_features, that allows users to query the
feature database for features that have been submitted by
others, optionally filtering on search terms. This, for example,
allows a user who is considering developing a feature for
a particular attribute to see all features that mention this
attribute. If there are close matches, the user could avoid
repeating the work, and develop another feature instead. The
user could also use the existing feature as a jumping-off point
for a related or new idea.

Second, we tightly integrate a Discourse-based forum. Dis-
course3 is an open-source discussion platform that is often
used as a forum for discussing software projects. Users are
provided with a forum account by the coordinator. They can
then post to several categories, including help, where they
can ask and answer questions about technical usage of the
platform, and features, where they can see the formatted
features, automatically posted, that have been successfully
submitted to the feature database. This provides an opportunity

3https://www.discourse.org

Fig. 3. An forum post for the sberbank prediction problem showing an actual
feature submitted by a crowd worker. The feature description, source code,
and computed metrics are shown, along with prompts for further discussion.

for users to discuss details of the feature engineering process,
post ideas, get help from other users about how to set up a
feature correctly, and use existing features as a jumping-off
point for a related or new idea. An example forum post is
shown in Figure 3.

While the specifics of this forum integration are important
for our current instantiation of FeatureHub, the overarching
idea is to define the unit of discussion at the feature level,
facilitating pointed feedback, exploration, and ideation — one
feature at a time. This contrasts with the software engineering
approach, in which feedback is often presented at the commit
or pull request level.

C. COMBINE

During or after the feature engineering process, the coordi-
nator can use FeatureHub to build a single machine learning
model, using the feature values from every feature submitted
thus far. To do so, the coordinator uses the following methods:

• extract_features: Feature source code is queried
from the database and compiled into functions, which
are executed on the training and test datasets to extract
corresponding feature matrices.

• learn_model: A sophisticated automated machine learn-
ing framework, auto-sklearn [5], is used to build
a single predictive model. The coordinator can modify
AutoML hyperparameters, but the goal is to build the
model with little intervention. Alternately, the coordinator
can override this behavior and build models directly for
finer control.

These two tasks can be executed by the coordinator multiple
times, at each point assessing the combined work of the data
scientists to date.

IV. PLATFORM ARCHITECTURE

The platform is architected around several priorities. First,
it must support concurrent usage by dozens of data scientists,
each of whom needs an isolated environment suitable for
data science, along with a copy of the training data. Next,
it must integrate heterogeneous source code contributions by
different workers into a single machine learning model. Hand-
in-hand with these is the requirement that the platform must
be able to safely execute and validate untrusted source code
without leaking information about the test sample. Finally, it
must enable detailed logging of users’ interactions with the
platform, to be used in further analysis of data scientists’
workflows.

A schematic of the FeatureHub platform is shown in Fig-
ure 4. We build on top of JupyterHub, a server that manages
authentication and provisioning of Jupyter Notebook container
environments. Each individual user environment is preloaded
with the most common data science packages, as well as
FeatureHub-specific abstractions for data acquisition and fea-
ture evaluation and submission, as discussed in Section III-B.

Careful consideration is given to ensuring that all code
contributions are thoroughly validated, and that extracted
feature values can be fully reproduced. To achieve this, a
user first evaluates their feature on training data in the local
environment. This ensures that the feature code has no syntax
errors and minimally satisfies the scaffolding. However, it is
not sufficient to ensure that the feature values are reproducible.

When the user attempts to submit a feature, FeatureHub
both extracts the feature source code and serializes the Python
function. Then, the function is deserialized by a remote evalua-
tion service, which attempts to extract the feature values again,
this time using the unseen test dataset as input. This reveals
reproducibility errors such as the use of variables or libraries
defined at the global scope, or auxiliary files or modules stored
on the local file system. This service also has flexibile post-
evaluation hooks, which we use to integrate with a separate
Discourse forum, but can also enable other custom behaviors.

Logging the users’ interactions with FeatureHub allows us
to more carefully analyze the efficacy of the platform and user
performance. Indeed, this is a key advantage of developing and
deploying our own system. We log user session events and
detailed information each time the user attempts to evaluate
or submit a feature in the database backend.

Finally, we design the platform with an aim towards easy
deployment, so that it can more easily be used in classroom
or intra-organizational environments.

V. EXPERIMENTS

We conducted a user test to validate the FeatureHub concept
and to compare the performance of a crowdsourced feature
engineering model to that of independent data scientists who
work through the entire data science pipeline. We also assessed
to what extent the collaborative functionality built into the
platform affects collaboration and performance.

Fig. 4. Overview of FeatureHub platform architecture, comprising the FeatureHub computing platform and the Discourse-based discussion platform. A user
writes a feature and evaluates it locally on training data. The user then submits their code to the Feature Evaluation server. The code is validated to satisfy
some constraints and to ensure that it can be integrated without bugs into the predictive model. The corresponding feature is extracted and an automated
machine learning module selects and trains a predictive model using the candidate features and other previously-registered features. The results are registered
to the database, posted to the forum, and returned to the user.

A. Freelance data scientists

We recruited data scientists on Upwork4, a popular freelanc-
ing platform. We advertised a position in feature engineering,
filtering users that had at least basic experience in feature
engineering using Python with pandas, a common module for
manipulating tabular data. Unlike other crowdsourcing tasks,
in which relatively unskilled workers execute “microtasks,”
the quality of feature engineering depends heavily on the
freelancer’s level of expertise. To allow workers with different
experience levels to attempt the task, we hired each freelancer
at their proposed rate in response to our job posting, up
to a $45 per hour limit. Figure 5 shows the distribution
of hourly rates for 41 hired crowd workers. This exposes
FeatureHub to an extreme test in enabling collaboration; as
opposed to a small, in-house, data science team or a group of
academic collaborators, our experimental participants live in
many countries around the world, work in different time zones,
and possess greatly varying communication ability, skill levels,
and experience.

Users were provided with a tutorial on platform usage
and other documentation. They were then tasked with writing
features that would be helpful in predicting values of the target
variable.

B. Prediction problems

We presented data scientists with two prediction problems.
In the first problem, data scientists were given data about users
of the home rental site Airbnb and their activity on the site [4].
Data scientists were then tasked with predicting, for a given
user, the country in which they would book their first rental.
In the second problem, workers were given data provided by
Sberbank, a Russian bank, on apartment sale transactions and
economic conditions in Russia [6]. Data scientists were then
tasked with predicting, for a given transaction, the apartment’s

4https://www.upwork.com

0 5 10 15 20 25 30 35 40 45
0

5

10

Hourly wage

C
ou

nt

Fig. 5. Hourly wages of data scientist workers from Upwork.

Problem Name Type Tables Examples
Train Test

airbnb Classification 4 213451 62096
sberbank Regression 2 30472 7662

TABLE II
Prediction problems used in FeatureHub user testing.

final selling price. Details of these prediction problems are
shown in Table II.

C. Experiment groups

In order to assess the effects of different types of collabora-
tive functionality on feature performance, we split workers
into three groups. The first group was provided access to
the FeatureHub platform, but was not able to use the in-
notebook feature discovery method nor the forum for viewing
and discussing submitted features. Thus, this group consisted
of isolated data scientists who were implicitly collaborat-
ing in the sense that their features were combined into a
single model, but otherwise had no coordination. A second

group was provided access to and documentation for the
discover_features client method as well as the feature
forum. A third group was provided access to the same func-
tionality as the second group, and was also provided monetary
incentives to avail themselves of this functionality.

D. Performance evaluation

Although we hired workers at an hourly rate, we also
wanted to create mechanisms that would motivate both high-
quality features and collaborative behavior. We sought to align
incentives that would motivate an entire group towards a
particular goal: achieving the best-performing model using
the features written by all workers in that group. To that
extent, we offered participants bonus payments based on their
performance in two broad areas.

• Collaborative behavior: Contributing to forum discus-
sions, building off code written by other participants,
writing well-documented and reusable code, and writing
clear, accurate, informative, and concise natural language
descriptions of features.

• Evaluation of features: Feature ranking of final model
and incremental models, and qualitative evaluation of
complexity and usefulness of features.

Bonus payments were offered in terms of percentage points
over the worker’s base hourly rate, allowing us to ignore
differences in base salary. We then created a bonus pool
consisting of 25 percentage points per user. Thus, a user
that did no work might receive no bonus, an average user
might receive a bonus of 25% of their base salary, and an
exceptional worker could receive a bonus of as much as 25n %
of their base salary, where n is the number of workers in their
group. We then clearly defined, to each worker, what objective
we were working toward, how we were measuring their
performance with respect to this objective, and what weight
we gave to different performance categories and subcategories.
The weights shown to each group can be seen in Table III.

Group 1,2 3

Collaboration 28 50
. . . Feature descriptions 28 20
. . . Forum interactions 0 30
Evaluation of features 72 50
. . . Quantitative 57 40
. . . Qualitative 15 10

TABLE III
Bonus payment weights (in %) for control and experimental groups. For

groups 1 and 2, the “Collaboration” category was listed as “Documentation”
to avoid bias, and the “Forum interactions” subcategory was not shown.

VI. RESULTS AND DISCUSSION

Collectively, the data scientist crowd workers spent 171
hours on the platform. Of the 41 workers who logged into the
platform, 32 successfully submitted at least one feature, com-
prising 150 of the hours worked. In total, we collected 1952
features. We also administered a detailed post-experiment

survey to participants, asking about prior feature engineering
tasks and their experience with the FeatureHub platform.

We limited data scientists to 5 hours on the platform, and
those that submitted at least one feature used, on average,
slightly less than that time. Before a data scientist could begin
to ideate and write features, they needed to invest some time
in learning the basics of the platform and understanding the
specific prediction problem. Though 21% of users reported
beginning to work on a specific prediction problem within 20
minutes of logging in, another 39% worked through tutorials
and documentation for 40 minutes or more, restricting the
time they spent on feature engineering directly. This constraint
meant that a worker was allotted at most 2.5 hours to read the
problem description, familiarize themselves with the data, and
write, test, and submit features. In a real-world setting, data
scientists may spend days or weeks becoming familiar with the
data they are modeling. Even so, we find that useful features
can be created within minutes or hours.

A. Integrated model performance

As described in Section III-C, during or after the feature
engineering process, the project coordinator can combine
source code contributions into a single predictive model. This
should be accomplished with minimal intervention or manual
modeling on the part of the coordinator, a key consideration
reflected in the design. FeatureHub provides abstractions that
allow the coordinator to automatically execute functions that
extract feature values and use these as inputs to a machine
learning model. Modeling can then be done either via an
integrated wrapper around an automated machine learning
library, or via manual model training, selection, and tuning.

Upon the conclusion of the experiment, we use this func-
tionality to extract final feature matrices and model the feature
matrix using our integrated auto-sklearn wrapper. Using these
completely automatically generated models, we make predic-
tions for the unseen test sets on Kaggle. The results of our
models, as well as those of other competitors, are shown in
Figures 6 and 7.

Overall, our models achieve performance that is competitive
with the best models submitted by expert data scientists
working for weeks or months at a time. The scores we achieve,
though not close to winning such competitions, place our
automatically generated models within several hundredths of
a point of the best scores: 0.03 and 0.05 for airbnb and
sberbank, respectively. In both cases, the scores achieved
by our models put them at an inflection point, in which an
important amount of predictive capability has been unlocked,
but the last few hundredths or thousandths or a point of
performance on the target metric have not been met. To be
sure, to a business, the value proposition of this difference,
though small in magnitude, can be significant. Regardless, this
exercise demonstrates that the combination of crowd workers
writing creative features and automated modeling can produce
useful, “good-enough” results. If so desired, the coordinator
can devote more resources to increasing the length of the
CREATE phase, the automated machine learning modeling, or

0 200 400 600 800 1000 1200 1400
−1

−0.8

−0.6

−0.4

−0.2

0

Team position

N
eg

at
iv

e
S

co
re

Score
Best score
FeatureHub score

Fig. 6. Performance of the FeatureHub integrated model as compared to
independent data scientists on airbnb, measured as normalized discounted
cumulative gain at k = 5. The negative of the scoring metric is reported
on the y-axis to facilitate a “smaller-is-better” comparison. The automatically
generated FeatureHub model ranked 1089 out of 1461 valid submissions, but
was within 0.03 points of the best submission.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

Team position

E
rr

or

Score
Best score
FeatureHub score

Fig. 7. Performance of FeatureHub integrated model as compared to indepen-
dent data scientists on sberbank6, measured as root mean squared logarithmic
error. The automatically generated FeatureHub model ranked 2067 out of
2536 valid submissions, but was within 0.05 points of the best submission.

direct modeling, up to the point where they are satisfied with
the model’s performance.

B. Time to solution

If the comparison is between data scientists working for
weeks or months and collaborators working for 2.5 hours or
less per person, it may not be surprising that the former group
outperforms the latter. However, for many organizations or
employers of data science solutions, an operative concern is
the end-to-end turnaround time for producing a solution. Under
the FeatureHub approach, data scientists can be requisitioned
immediately and work in parallel, meaning that the parameters
controlling time to model solution are the amount of time
for each data scientist to work on feature engineering and

6Sberbank competition leaderboard accessed on 2017-06-04; the competi-
tion end date is 2017-06-29.

the amount of time to run the automated modeling. In our
experiment, we allow participants to work for only 2.5 hours
on each feature engineering task and run auto-sklearn for only
six hours, for a potential turnaround time of less than one day.

On the other hand, in the independent or competitive
approach, each data scientist has little incentive to begin
work immediately, and rather considers the total amount of
time they anticipate working on the problem and the final
submission deadline, which may be two to three months
ahead. In Figure 8, we show the time from first submission
to first recording a submission that beats the score of the
FeatureHub automated model output. Of the participants who
succeed in surpassing FeatureHub at all, 29% take two days or
longer to produce these submissions. This, too, is an extremely
conservative analysis, in that many competitors work actively
before recording a first submission. Finally, once a winning
solution has been identified at the end of the entire competition
period, the problem sponsor must wait for the winner’s code
and documentation to be submitted, up to two weeks later, and
integrate the black box model into their own systems [4].

1 da
y

2 da
ys

3-
5 da

ys

6-
10

da
ys

>1
0 da

ys

Nev
er

be
at

0

200

400

600

800

Days from first submission

C
ou

nt

Fig. 8. The amount of days, by Kaggle competitor, from his/her first submis-
sion to the problem to their first submission that achieved a better score than
FeatureHub on airbnb. This omits the effect of participants’ preprocessing,
feature engineering, and modeling work before initially submitting a solution.
Considering that participants could begin the competition at any point over
2.5 month span, many top solutions were submitted weeks or months after
the competition began.

C. Diverse features

Given that crowd workers have a variety of backgrounds and
skill levels, as well as diverse intuition, it is unsurprising that
we observed significant variation in the number and quality
of features submitted. We visualize the collected features in
Figures 9 and 10. Data scientist workers were able to draft
features that covered a wide subset of the feature space. By
comparison, we also show features automatically generated by
the deep feature synthesis algorithm [7]. In a two-dimensional
projection, features generated by FeatureHub data scientists
take up more of the feature space than is filled by automatically
generated features.

One challenge was that some participants thought they could
maximize the reward for their features by registering very

0 50 100 150 200

0

200

400

Principal component 1

P
rin

ci
pa

lc
om

po
ne

nt
2

Fig. 9. Features for airbnb projected on first two PCA components by
FeatureHub (grey circles) and Deep Feature Synthesis (red squares).

−25 −20 −15 −10 −5 0
0.5

1

1.5

2

2.5

3

Principal component 1

P
rin

ci
pa

lc
om

po
ne

nt
2

Fig. 10. Features for sberbank projected on first two PCA components by
FeatureHub (grey circles) and Deep Feature Synthesis (red squares).

similar features in a loop. Though individual features scored
low, based on criteria in Table III, we observed a single
data scientist who still submitted an overwhelming 1, 444
features in our experiment. Automated modeling strategies that
perform feature selection or use tree-based estimators are able
to discard less predictive features. Nevertheless, such behavior
should be restricted as best as possible.

D. Facilitating collaboration

Facilitating collaboration among data scientists is a chal-
lenging prospect. Data scientists, who may not have much
software engineering experience, often do not take advantage
of existing approaches such as version control systems.

FeatureHub facilitates implicit collaboration among data sci-
entists through the integration of submissions from all workers.
In this conception, the model of the group outperforms the
model of any individual. We probe this suggestion by building
models for each user separately based on the set of features
that they submitted, and comparing this to a single model built
on the entire group’s feature matrix. We find that in the case of
the sberbank prediction problem, the group’s model improved

upon the best user’s model by 0.06 points. To be sure, it is not
surprising that adding more features to a model can improve
its performance. However, this still shows that the amount of
work that can be produced by individuals working in isolation
is limited, in practice, compared to the scalability of the crowd.

As discussed in Sections V-C and V-D, one approach to
facilitating more explicit collaboration is through the imple-
mentation of native feature discovery methods, as well as
through the integration of a discussion forum. Due to the sub-
stantial variation in individual worker quality and productivity,
we were not able to robustly disentangle the effects of these
mechanisms on feature performance. However, qualitative ob-
servations can be made. We found that including functionality
for explicit collaboration reduced the mean time from first
logging in to the platform to successfully submitting a first
feature by about 45 minutes, as reported by participants. One
factor contributing to this effect was that data scientists with
access to the discover_features command used this
functionality approximately 5 times each, on average, allowing
them to see and build off existing successful submissions.
Furthermore, this subset of data scientists reported that they
found the integrated discussion most helpful for learning how
to successfully submit features, through imitation or by asking
others for help, and for avoiding duplicating work already
submitted by others.

VII. RELATED WORK

FeatureHub relates to work in several areas, including
data science competitions, crowdsourced data analysis, and
automated machine learning.

Programming and data science competitions: There are
several existing platforms that present data science or machine
learning problems as competitions. The most prominent of
these, Kaggle, takes data science problems submitted by
companies or organizations and presents them to the public
as contests, with the winners receiving prizes provided by the
problem sponsor. Competing data scientists can view problem
statements and training datasets, and can develop and train
models on their own machines or in cloud environments.
They can also discuss the competition, comment on each
others’ code, and even modify existing notebooks. The idea of
gamifying machine learning competitions has led to increased
interest in data science, and the Kaggle platform has lowered
the barrier to entry for new practitioners.

However, there are several aspects of Kaggle’s approach that
FeatureHub critiques and aims to improve upon. First, Kag-
gle’s format may lead users to primarily tackle the machine
learning algorithms themselves, instead of the features that go
into them. Rather than focusing their collective brainpower
on the difficult “bottleneck” step of feature engineering, users
may engineer only a few features before attempting to tinker
with different learning algorithms and their parameters, a
potentially less efficient road to progress. In FeatureHub, we
constrain users to work only on feature engineering while
purposely abstracting away the other elements of the data
science pipeline. Second, the pool of organizations that are

willing to sponsor challenges is relatively small, because such
sponsorship requires releasing proprietary data to the public.
In FeatureHub, organizations with sensitive data can release
a very small subset — just enough to allow data scientists to
understand the schema and write feature definitions — yet still
extract feature values in the backend on the entire, unseen test
set. Third, because datasets are released in varying formats,
users spend a significant amount of initial time wrangling and
preprocessing the data, and these same tasks are redundantly
performed by thousands of competitors over the course of the
exercise.

In another vein, researchers have focused on factors that
drive innovation in programming contests [8]. These factors
include a competitive structure highlighted by leaderboards,
real-time feedback, discussion, and open-source code. We seek
to take advantage of these patterns, and more, in FeatureHub.

Crowdsourced data labeling: More and more researchers
have used the crowd to label datasets, often of images, at
scale, using crowdsourcing platforms like Amazon Mechanical
Turk [9]–[11]. These platforms are best suited for relatively
unskilled workers performing microtasks, such as labeling a
single image. Crowd workers can also be leveraged for more
complex tasks via hybrid systems that use machine learning
models to prepare or combine data for human workers. For
example, [12] use crowd workers to continuously evaluate
machine-generated classifications in a large-scale multiclass
classification setting. In another example, [13] use crowd
workers to count the number of objects in an image by
first segmenting the image into smaller frames using machine
vision algorithms.

Crowdsourced feature engineering: Crowd workers have
been involved in feature engineering in the past, but to a
limited extent. Most systems have used crowd workers either
to assess the value of a feature on an example-by-example
basis (which can be thought of as data labeling, as above) or
to compose features using natural language or other interface
elements. For example, [14] incorporate crowd workers in the
data labeling and feature engineering steps when constructing
hybrid human-machine classifiers. In their system, users label
data and give their opinions on different feature definitions via
a structured voting system. Feature values must be manually
extracted from these feature definitions; thus, scalability and
automation remain issues.

Automated machine learning: Recent advances in hyper-
parameter optimization and open-source software packages
have led to increased use of, and attention paid to, automated
machine learning (AutoML) methods. [5] use Bayesian op-
timization techniques to automatically choose approaches to
feature preprocessing and machine learning algorithms, and to
select hyperparameters for these approaches. They improve on
prior work [15] that formalizes AutoML problems as combined
algorithm selection and hyperparameter optimization. In a
similar approach, [16] use genetic programming to optimize
machine learning pipelines. All of these state-of-the-art al-
gorithms enable automated machine learning models to be
deployed with relatively little difficulty, performing well in

various machine learning tasks. However, one downside is that
these systems expect input to be structured as a feature matrix.
In many practical situations, input to the data science pipeline
begins in a highly relational form, or in unstructured formats
like logs, text, or images. Thus, manual feature engineering is
still required to convert unstructured data into a feature matrix.

Automated feature engineering: In [7], the authors develop
an algorithm for automatically extracting features from rela-
tional datasets. This algorithm, called Deep Feature Synthesis,
enumerates a subset of the feature space through understand-
ing of the dataset schema and the primary key-foreign key
relationships. In the databases community, a body of work
has been developed for propositionalizing relational databases
into “attribute-value” form for data-mining applications [17],
[18]. For other unstructured data, such as text and images,
techniques like tf-idf vectors, Latent Dirichlet Allocation
[19], convolutional neural networks, and autoencoders can
extract feature representations.

VIII. CONCLUSION

We have presented a novel workflow for leveraging the
teams of data scientists in feature engineering efforts, and
instantiated this approach in FeatureHub, a platform for
collaborative data science. This workflow addresses several
shortcomings of existing efforts to crowdsource data science
or machine learning. Whereas in traditional models, data sci-
entists redundantly perform dataset cleaning and preprocessing
as well as model selection and tuning, with FeatureHub, we
focus workers’ creative effort on feature engineering itself. We
propose a set of abstractions and code scaffolding for feature
implementations, allowing us to address another shortcoming
of existing approaches: by processing feature definitions in
real-time, as they are written and submitted by users, we
can incrementally and automatically build models, allowing
a problem coordinator great flexibility over the metrics they
use to govern a task’s stopping point. Moreover, by scaling the
crowd up and down, the wall clock time to task completion
can be managed directly, rather than being tied to the stated
end date of a traditional data science competition.

We validated our platform in an experiment combining
features submitted by freelance data scientists of different
backgrounds working around the globe. Using automatically
generated models, we achieved performance within 0.03 to
0.05 of the best models on Kaggle. Though our models are
not close to winning such competitions, we achieve reasonable
performance with limited resources and human oversight. By
implementing, deploying, and testing FeatureHub, we have
taken steps towards collaborative data science and feature
engineering and opened a variety of opportunities for further
exploration.

A. Future Work

Several avenues for future work present themselves. The
platform could be designed to provide more accurate real-time
feedback upon feature submission. That is, the models built to
provide initial evaluation of candidate features do not take into

account the set of features that have already been submitted
to that point, nor the features that are likely to be submitted in
the future. Efficient algorithms and metrics could be developed
that would estimate a single feature’s contribution to the final
machine learning model in the absence of future features. This
would also allow a problem coordinator to include real-time
payments based on feature evaluation metrics in their incentive
model.

FeatureHub, though a compelling demonstration of the
power of the workflow we propose, could be made more robust
and scalable, for use within organizations or classrooms. In
the latter case, the platform could be used to teach feature
engineering and tabular data manipulation without frustrating
introductory students with problems of data acquisition and
model development. A variety of additional functionality could
also be built into the platform. For example, feature scaffolding
could be modified to expose feature hyperparameters, such as
threshold levels, thus allowing the system to include these in
end-to-end hyperparameter optimization.

Finally, the power of the crowd could be harnessed for other
aspects of data science that are currently handled, either im-
plicitly or explicitly, by the problem coordinator. For example,
additional sets of crowd workers could assume separate roles,
as in [20]. Validation — ensuring that feature definitions do
not have semantic bugs, and that feature descriptions match
the code that is executed — and curation — selecting the
most promising set of features for further refinement or specifc
inclusion in a model, with a focus on interpretability or par-
simony — would fit nicely within the FeatureHub workflow.

ACKNOWLEDGMENT

We thank the authors of [7] for kindly providing us with
features produced by the deep feature synthesis algorithm.
This research is partially funded by the National Science
Foundation award number ACI-1443068.

REFERENCES

[1] C. Taylor, K. Veeramachaneni, and U. O’Reilly, “Likely to stop? predict-
ing stopout in massive open online courses,” CoRR, vol. abs/1408.3382,
2014.

[2] P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[3] “Crowdsourcing feature discovery,” http://radar.oreilly.com/2014/03/
crowdsourcing-feature-discovery.html, accessed: 2015-01-30.

[4] “Kaggle airbnb new user bookings,” https://www.kaggle.com/c/airbnb-
recruiting-new-user-bookings, accessed: 2017-06-04.

[5] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems, 2015, pp. 2962–
2970.

[6] “Kaggle sberbank russian housing market,”
https://www.kaggle.com/c/sberbank-russian-housing-market, accessed:
2017-06-04.

[7] J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference
on. IEEE, 2015, pp. 1–10.

[8] N. Gulley, “Patterns of innovation: a web-based matlab programming
contest,” in CHI’01 extended abstracts on Human factors in computing
systems. ACM, 2001, pp. 337–338.

[9] “Amazon mechanical turk,” https://www.mturk.com/.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[12] C. Sun, N. Rampalli, F. Yang, and A. Doan, “Chimera: Large-scale
classification using machine learning, rules, and crowdsourcing,” Pro-
ceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1529–1540, 2014.

[13] A. D. Sarma, A. Jain, A. Nandi, A. Parameswaran, and J. Widom,
“Surpassing humans and computers with jellybean: Crowd-vision-hybrid
counting algorithms,” in Third AAAI Conference on Human Computation
and Crowdsourcing, 2015.

[14] J. Cheng and M. S. Bernstein, “Flock: Hybrid crowd-machine learning
classifiers,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. ACM, 2015, pp.
600–611.

[15] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms,” in Proc. of KDD-2013, 2013, pp. 847–855.

[16] R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16, 2016, pp. 485–492.

[17] A. J. Knobbe, M. de Haas, and A. Siebes, Propositionalisation and
Aggregates. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.
277–288.

[18] S. Kramer, N. Lavrač, and P. Flach, Propositionalization Approaches
to Relational Data Mining. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 262–291.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[20] M. S. Bernstein, G. Little, R. C. Miller, B. Hartmann, M. S. Ackerman,
D. R. Karger, D. Crowell, and K. Panovich, “Soylent: A word processor
with a crowd inside,” in Proceedings of the 23Nd Annual ACM Sympo-
sium on User Interface Software and Technology, ser. UIST ’10, 2010,
pp. 313–322.

