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Abstract—We present AnonML, a system for privacy-
preserving model generation over a network of peers. Our goal
is to allow a group of users to combine enough data to generate
useful machine learning models without revealing private infor-
mation. In our setting, each peer has a single row of featurized
data according to a shared schema, and an aggregator would like
to train a binary classification model on the union of all peers’
data. Our system horizontally and vertically partitions the set of
all peers’ data and assembles a differentially-private histogram
for each partition. An ensemble classifier can then be trained on
the set of noisy partitions. AnonML can be used with or without
differentially private data perturbation. Without perturbation,
the resulting classifiers achieve performance competitive with
centrally-generated models. With local differential privacy, a
strong theoretical guarantee, AnonML is capable of producing
useful models for practical prediction problems.

I. INTRODUCTION

In the past two decades, the amount of user data collected
by smartphones and internet services has skyrocketed. At the
same time, advances in machine learning and data processing
technology have increased the range of uses for all kinds of
personal data. In particular, classifiers are used for everything
from targeted advertising to media recommendations to med-
ical diagnoses. Every machine learning application is only as
good as the data used to train it, and many classifiers must be
trained using detailed, sensitive information. This has led to a
central tension between privacy and utility.

For many applications, one party must aggregate data from
thousands of people in one place in order to train a classifier.
As a result, a dominant paradigm for machine learning today
involves a central data-holding authority that has extensive,
exclusive access to data from a large number of users. A few
large authorities – corporations, universities, and government
institutions – control the collection and storage of vast amounts
of personal data. These organizations are able to build whatever
models they want with the data they have, and to use those
models however they like. As machine learning continues to
gain popularity, the number of entities who seek to collect
sensitive user data will continue to grow.

Unfortunately, this paradigm limits who can use machine
learning and what they can use it for, and it tends to disenfran-
chise the subjects of the data. Users who don’t want to share
data with one of these organizations may not be able to access
all the machine-learning powered products and services they’d
like. Entities without access to a large data-gathering apparatus
– e.g. researchers, small companies, and normal people – have

a much harder time gathering enough data to train certain kinds
of models. And often, once shared, a user’s data escapes their
control.

We attempt to address these issues with AnonML, a
system that enables privacy-preserving machine learning by
an untrusted aggregator. In our setting, each of a group of
peers controls a set of rich personal data. The peers agree to
share small, anonymous packets of plain-text information with
the aggregator. Our goal is to allow the aggregator to collect
enough data from the group to generate a useful machine
learning model without compromising the peers’ privacy.

In this paper, we approach challenges in three domains:

1) Trust and anonymity: How can a peer share data with
an aggregator without revealing his identity? How can
an aggregator verify that the data she receives is coming
from some peer in the network without linking the data
to a specific peer, while preventing duplicate senders?

2) Privacy: Given that a peer can send data securely and
anonymously, how can he guarantee that the contents of
his data do not reveal sensitive information? Using local
differential privacy as our metric, how can we maximize
the utility of data releases while maintaining a high level
of privacy?

3) Learning: Given a set of noisy, anonymous data points,
how can an aggregator generate a useful model? What
kinds of datasets lend themselves to useful machine
learning with our system?

This paper is organized as follows: Section II summarizes
related work. Section III describes a real-world scenario as
a motivating example. Section IV gives an overview of the
AnonML system. Section V sketches out AnonML’s net-
work communication backbone. Section VI outlines the data
collection process and our model building process. Section
VII discusses private data sharing techniques. Section VIII
presents our experimental design and the results we achieved.
Section IX concludes and suggests future work.

II. RELATED WORK

A great deal of recent work has focused on privacy preserv-
ing machine learning or secure multiparty machine learning.
In this section we give a brief overview of related literature.



A. Data privacy

There is a rich tradition of research into privacy-preserving
data collection and processing techniques. Random Response,
first invented by Warner in 1965 [1] and improved by Green-
berg et al. shortly after [2], involves having individuals an-
swer questions incorrectly with some fixed probability. Post-
randomization (PRAM) refers to a similar technique applied in
a centralized setting, after unperturbed data has been collected
[3]. The effects of PRAM have been studied in a number of
data-analysis related contexts, including the utility of PRAM-
perturbed joint type estimates [4] and the potential for training
logistic regressions on data after PRAM [5].

Since its introduction in 2006, differential privacy has
become a de facto standard for privacy-preserving data release
[6], [7]. In general, differential privacy can be assessed in two
settings: global, where a trusted central authority collects real
data, then releases it in a privacy-preserving manner, and local,
where there is no such authority, and each user releases a
privatized version of their own data. We are concerned with
the local setting.

One related line of work is private multiparty machine
learning, where multiple data-holding parties would like to
build a model without directly sharing data [8], [9], [10]. Those
authors consider a setting in which each party possesses a
local classifier based on private data. Many parties can then
combine their local classifiers into a more powerful ensemble
using locally-private releases. We want to accommodate the
case in which a user can generate features, but does not have
enough information to train a classifier on their own.

Our system uses locally-private histogram estimation for
data sharing. RAPPOR, by Erlingsson et al, addresses a version
of this problem [11], and our data sharing mechanism is based
on their proposal.

B. Cryptography

Some recent work has focused on machine learning over
encrypted data, either with fully homomorphic encryption
(FHE) or secure multiparty computation (MPC) [12]. Others
have attempted to use multiparty computation with differential
private mechanisms to produce globally-private answers to
queries in the absence of a trusted central authority. An early
proposed system by Dwork [13] uses MPC and distributed
Laplacian noise generation to allow a group of users to answer
counting problems about their personal data with differential
privacy.

These solutions are powerful, but they tend to have
high communication and computation costs. As technology
improves and computation and bandwidth continue to get
cheaper, FHE- and MPC-based solutions may become more
viable. However, we believe that the best way to approach
a practical solution in 2017 is by sharing and computing on
plain-text data.

III. MOTIVATING EXAMPLE

AnonML is designed as a solution to the general problem
of privacy-preserving classifier generation without a trusted
authority. AnonML can be used in a variety of different

scenarios, some of which we discuss in section IX-B. Here, we
describe a single potential use case as a motivating example.

Consider a Massive Online Open Course (MOOC): an
online course with thousands of students, such as one offered
by EdX or Coursera. Each student watches lectures online,
completes homework assignments, and takes tests. As students
interact with the courseware, their computers collect and store
thousands of data points [14].

In a MOOC ecosystem, there are multiple stakeholders
– students, instructors, universities, and platform providers.
Each stakeholder may be interested in using student data to
generate predictive models or classifiers, but the stakeholders
are likely to have different goals. Instructors may want to
know who is likely to drop out in the coming weeks; students
may want to predict their chances of earning a passing grade.
The platform provider may want to predict which courses
will interest a particular student. And university policy makers
might be interested in which attributes predict student retention
and success.

To achieve their goals, each stakeholder needs access to
some portion of the data, and the data generators (students)
may trust different stakeholders to different degrees. In a
traditional MOOC scenario, one authority, likely the course
administrator, has access to the entire dataset. She can choose
to share data with other stakeholders, like instructors or univer-
sity researchers, or generate models on their behalf. Although
students generated the data, they relinquish control over who
can access it and what is done with it.

With AnonML, students are able to control their own data
to a much greater degree. Different stakeholders can query
students for different types of data depending on their needs,
and students can grant each query independently. Since data
is only ever released privately, AnonML makes it possible for
any student in the group to become an aggregator themselves:
imagine a machine learning MOOC in which students train
models on each other’s data. For course administrators and
universities, AnonML minimizes risk and reduces overhead.
If models can be learned on private data, there is less need
to store sensitive personally-identifying information, and less
risk of a damaging data breach.

IV. ANONML OVERVIEW

With AnonML, an aggregator collects data from a large
group of data-holding peers in order to construct a classifier.
The data shared by the peers is anonymous and differentially
private, and the aggregator does not need to be trusted. The
set of peers in the group is known to every peer in the group
as well as the aggregator. After the group has been formed,
no information to identify any individual within the group
should be associated with any of the data points shared with
the aggregator.

At a high level, AnonML works as follows:

1) Proposal: An aggregator proposes a classification prob-
lem and describes a label and a set of features. All the
peers who agree to take part register their identities with
the aggregator. The aggregator partitions the set of peers
and requests a set of feature subsets from each partition.



2) Local processing: Taking direction from the aggregator,
each peer computes a set of features and a label on their
own data. Each peer assembles a set of partial feature
vectors corresponding to the requested feature subsets.

3) Perturbation: Each peer perturbs each one of their partial
feature vectors using a probabilistic, differentially private
algorithm.

4) Sharing: For each partial feature vector, each peer gen-
erates a data packet consisting of their vector and a
verification token for that vector. The peer shares each
packet with the aggregator over a separate anonymous
network connection.

5) Verification: The aggregator uses each data packet’s
token to verify that it was sent by a member of the group,
and that no peer sent duplicate data.

6) Learning: The aggregator trains a classification model
on each partition of the collected data. The models are
combined into an ensemble based on cross-validation
scores.

AnonML can be thought of as two separate, complementary
data-sharing techniques. First is a system for anonymous data
sharing among a number of trusted peers, as executed in steps
1, 4, and 5 above and described in section V of this paper.
This system assumes nothing about the data being shared, and
does not provide differential privacy on its own.

The second is a differentially private method for releasing
feature vectors, as executed in step 3 and described in section
VII. The differential privacy of the system does not depend on
anonymous communication: AnonML’s theoretical guarantees
are the same regardless of how peers choose to share their
data with the aggregator. However, we argue that the two
techniques – anonymous communication and differentially-
private perturbation – complement each other, and using both
in combination serves to reduce the risk of privacy breaches
more than either one could on its own.

Finally, in step 6, the aggregator learns a model. In section
VI-B we present a simple method by which an aggregator can
use data shared with AnonML to train an ensemble classifier.
In section VIII we test our method on real-world datasets and
describe our results.

V. ANONYMOUS DATA EXCHANGE

In AnonML, when an aggregator receives a message, she
must be able to verify that the message is indeed from one
of the peers in the network, but must be unable to further
narrow down the set of peers it came from. These are two
separate requirements. The first, anonymity, ensures that the
aggregator cannot tell from whom in the group a particular
message was sent. The second, verifiable membership, ensures
that the aggregator can verify that each message was sent by
a legitimate peer.

A. Anonymous Routing

For AnonML to satisfy anonymity, any peer in the network
must be able to send network packets to any other without
leaking any identifiable information to the receiving party. To
achieve this, AnonML peers send traffic through an onion
routing network such as Tor [15]. Each peer generates a new
identity for each packet so that consecutive packets cannot be

linked to the same peer. In our experiments, we used Tor itself
as the network layer, but this may not be ideal for larger-
scale implementations of AnonML. Tor is not designed for
clients to create a new circuit for each packet, as AnonML
requires, as doing so can place a heavy load on Tor’s network.
In addition, Tor can be vulnerable to traffic frequency analysis
by adversaries with powerful monitoring abilities [16]. These
concerns can be mitigated with a custom implementation of
an onion routing network in which each peer acts as a relay.
We omit the details of such a system for the sake of brevity.

B. Anonymous verification

Anonymous network communication presents a problem
for the aggregator: if she does not know where a given feature
vector comes from, how can she be sure the sender is part
of the trusted group of peers? Additionally, how can she be
certain the same peer is not sending duplicate packets? To
address these issues, AnonML peers must send each message
to the aggregator with a verification token attached. The token
must prove that the source of the message is someone from
the group without revealing additional information, and it must
ensure that the same peer cannot send duplicate messages to
skew the aggregator’s results.

In a recent paper, Anonize [17], Hohenberger et al. propose
a system for solving the closely-related anonymous survey
response problem. Anonize allows an authority to select an
ad-hoc group of users and create a "survey" where each user
can anonymously submit exactly one response. An Anonize
registration authority (RA) issues a "master user token" to each
user in the group. The survey authority (SA) then publishes a
unique survey ID. Each user with a master token can use the
survey ID to generate a non-interactive zero knowledge proof
(NIZK) which proves they have been authenticated by the RA
and commits them to their answer. This is the verification
token. Each authenticated user can only generate one token
for each survey ID, and anyone can verify their token. It is
computationally hard to determine which authenticated user
generated a particular token, and computationally hard to forge
an illegitimate token. In the context of AnonML, the aggregator
acts as both a RA and a SA, and create a new "survey" for
each feature vector that they request.

VI. LEARNING

Here we describe the structure of the dataset which an
aggregator collects, and how that data can be used to generate
a classifier. We use the following terminology:

– An entity is an abstract object which the model will
attempt to classify.

– A feature is a value computed from the data that quantifies
behavior/property of an instance of an entity.

– The label is a special feature: the value which the model
will be trained to predict.

– A discriminatory model is a mathematical function which
accepts as its input a set of features pertaining to an
instance of the entity, and produces as its output a
prediction for the value of that instance’s label. When
used in this context, it is also referred to as a classifier.

Let’s return to our MOOC use case for an example.
Suppose the administrator of a class wants to train a model on



last semester’s students which will predict, half-way through
next semester’s class, whether each student will eventually pass
or fail. In this case, the entity is a student. Some features may
be variables like “age,” “hours spent watching lecture videos,”
and “average homework grade,” measured at the mid-semester
point. The label is a boolean variable which represents whether
or not a student passed the class. The resulting discriminatory
model will accept as input features about a student’s perfor-
mance and produce as output a predicted label of “PASS” or
“FAIL.”

A. Data collection

Fig. 1: Partitioning the dataset. In this example, there are kf =
6 features total and n peers. The aggregator splits the group
into kp horizontal partitions, and then requests kh subsets of
ks features each from each peer.

Suppose that:

– There are n data-holding peers in the network.
– Each peer i, 1 ≤ i ≤ n has a set of data pertaining to at

least one instance of an entity.
– Each peer is able to compute kf features on his/her data,
xi1...kf , as well as a class label l.

Without loss of generality, we will assume that each peer
computes a full set of features corresponding to a single entity.
The total set of data present in the network can be thought
of as an n × kf matrix, with each row corresponding to one
instance and each column corresponding to one feature. First,
the aggregator splits the group of peers into kp equally-sized
subgroups, which we’ll call peer partitions, using a shared
source of randomness. These are horizontial partitions of the
dataset. The aggregator publishes the list of peers (by public
key or other identifier) who belong to each partition.

The aggregator then requests a list of feature subsets from
each peer partition, kh subsets with ks features each. Feature

subsets must not overlap within a partition, so kh · ks ≤ kf .
Each peer in each partition sends a separate data packet
containing a partial feature vector for each feature subset
requested of them. These data form vertical partitions. The
purpose of creating peer partitions is to allow the aggregator
to request different feature subsets from each one, thereby
capturing more information about joint feature distributions in
the dataset. In total, the aggregator collects kp · kh partitions.
Each vertical partition contains ks features and one label for
each of n

kp
entities. The partitioning process is visualized in

figure 1.

B. Building a model

The aggregator’s goal is to use the noisy partitions to learn
a discriminatory model that maps a feature space to a label:

l← g(x1...kf ) (1)

where kf is the total number of features, x1...kf are feature
values, g(.) is the model, and l is the label we want to infer.
Without loss of generality, we will consider the case where the
label is a binary variable, l ∈ {0, 1}.

Once the aggregator has collected all nparts = kp · kh
partitions of the dataset, she learns a classifier on each one,
gi(.) for 1 ≤ i ≤ nparts. Each partition classifier accepts as
input a subset of all features, xsub(i), and outputs a single label
prediction in {0, 1}. In order to combine the classifiers into
an ensemble, the aggregator cross-validates each partition’s
classifier on the noisy data to obtain a performance score, si,
such as ROC/AUC or f1. Then the discriminatory function is

score(x1...m) =

nparts∑
i=1

sigi(xsub(i))

−
nparts∑
i=1

si(1− gi(xsub(i)))

g(x1...m) =

{
1, if score(x1...m) ≥ 0

0, otherwise
(2)

This method is similar to the feature subspace method, first
described by Ho [18]. We tested different types of partition
classifiers and different cross validation metrics, and we de-
scribe the results in section VIII-D.

VII. DATA PRIVACY

Thus far, we have shown how AnonML peers exchange
data with the aggregator such that the provenance of their
network packets is hidden. However, a secure, anonymous data
exchange protocol does not prevent disclosure caused by the
content of the data. For example, suppose a student from our
MOOC example shares a feature packet including their grade
on homework 4 (feature), their zip code (feature), and their
final grade (label). If the aggregator has auxiliary information
about the student – perhaps they’ve alluded to their grade or
their location on a public forum in the past – they may be able
to uniquely identify the student’s data packet, thereby learning
sensitive information (their final grade). In such a situation,



it doesn’t matter whether the aggregator cannot connect the
packet to their IP address or public key: the student’s privacy
is compromised anyway.

To account for these privacy violations, our system gives
participants the option to obscure their data with perturbation,
giving them strong theoretical protection with differential
privacy.

Developed in a series of papers by Cynthia Dwork et al.,
[19], [20], differential privacy is a measure of the privacy-
preserving quality of a system which releases information
about a data set. It has been extremely influential in the
past decade, and has come to dominate both theoretical and
practical discussions on privacy. Differential privacy describes
the way a system’s output responds to small changes in
the underlying data. Intuitively, no one person’s presence or
absence should affect the system’s behavior more than a trivial
amount. If a user is deciding whether to allow their data to
be used in a differentially private release, they should have
confidence that the algorithm will likely produce the same
output whether they do or not.

More formally: Suppose we have an algorithm, A, which
operates on a data set, D, and produces output according
to some probability distribution. Now, suppose we have two
datasets, D1 and D2, which differ by a single element d.
Differential privacy quantifies amount that such a change can
affect the probability distribution of the algorithm’s output. A
is said to be ε-differentially private if, for every D1, D2 and
every set of possible outputs S ⊆ range(A):

P [A(D1) ∈ S]

P [A(D2) ∈ S]
≤ eε (3)

It suffices to show that (3) holds for every S with a single
element. In other words, the probability that A(D1) produces
any output y must be close (within a fixed multiplicative factor,
eε) to the probability that A(D2) produces the same output.
We will use ε-differential privacy to quantify the privacy loss
incurred by our method of data perturbation and table release.

Differential privacy can be assessed in two settings:

– Global: A trusted data analyst has access to data from
many different people. The analyst applies the algorithm
A to the full dataset and releases aggregate statistics or
full databases.

– Local: Each person only has access to their own data, and
there is no trusted central authority. Each person perturbs
and releases their own data separately.

In our setting, each peer must publish their own data as a
single point, so AnonML provides local differential privacy.
This is achieved as follows. First, peers preprocess their
partial feature vectors 1, convert them into local, bit-string
“histograms.” Next, peers perturb their histograms and share
them with the aggregator. Then the aggregator combines noisy
histogram data and estimates the joint distribution of feature
vectors in the group. Finally, the aggregator samples synthetic
training data from this joint distribution and proceeds to build
a model.

1A partial feature vector includes a peer’s label value and a subset of their
feature values.

A. Feature preprocessing

The aggregator’s goal is to estimate the joint distribution
of feature-label vectors in each vertical partition of the dataset
using differentially private queries to each peer. We can map
this task to the problem of locally-private histogram estimation.

Histogram estimation assumes that each member of a group
has a single value from a finite domain of possible categorical
values. The estimator must use differentially-private queries to
estimate the frequency of each value in the group. The aggre-
gator uses histogram estimation to approximate the distribution
over each vertical partition in the dataset. This method requires
that all features and labels be discrete values, so that each
partial feature vector can be mapped to a single categorical
value. As we will show, it is desirable for the domain of the
histogram to be small, so features should be of low cardinality.

First, continuous numeric features are mapped to low-
cardinality ordinal features. Then, to reduce error, high-
cardinality categorical features may be mapped to lower-
cardinality features via grouping. Finally, each partial feature
vector is mapped to a single categorical value. For example, a
vector containing three binary features and a binary label can
be mapped to a bit string, c ∈ {0, 1}4.

B. Feature binning

Many features in real datasets are continuous or integer
variables. In order to share them as private histograms, it’s first
necessary to reduce them to low-cardinality discrete values. We
do so via binning: mapping continuous and ordinal variables to
a smaller, discrete domain using threshold values. For example,
a “test score” feature between 0 and 100 could be mapped to
bins of [0, 20), [20, 40), ..., [80, 100).

As we will show in section VII-D, the expected error
of histogram estimation is very sensitive to the histogram’s
cardinality. Therefore, to minimize expected error, we want
to reduce feature cardinality as much as possible. For this
paper we reduced all ordinal features to binary variables. We
chose to bin variables around their global median, reason-
ing that without prior information about feature-label joint
distributions, we should aim to maximize feature parity. In
other words, each feature is mapped to bins of [min,median)
and [median,max). We devised a privacy preserving median
estimation technique, which we describe next.

Privacy preserving median estimation: We use a simple
binary search with privacy-preserving queries to estimate the
median for continuous-valued features. Our method requires an
educated guess about the minimum and maximum values in
the distribution. Luckily, such information is often available in
practice: for example, our "test score" feature must be between
0 and 100. The algorithm involves splitting the group of peers
into k partitions, then querying each one in sequence to obtain
progressively more accurate estimates for the median. The full
method that the aggregator uses is described in algorithm 1.

On the peers’ end, the remote procedure call ISGREATER
returns a perturbed bit, b, which indicates whether the peer has
a value greater than the proposed median estimate. ISGREATER
uses random response with privacy parameter εe, and algorithm
1 involves a single differentially private query to each peer in
the group. This algorithm can be generalized to estimate the



Algorithm 1 Estimate the median of a numeric feature.

Require: Π is a set of random partitions of all peers
Require: (min,max) defines range of possible values
Require: ε is the privacy parameter
Require: MARGINOFERROR is a method which finds the

expected error of a noisy estimate (equation 4)

function ESTIMATEMEDIAN(Π, min, max, ε)
e ← max−min

2 . Estimated median
step ← max−min

2
for π ∈ Π do

n ← 0
for p ∈ π do . Each peer in partition

n ← n + p.ISGREATER(e)
end for
err ← MARGINOFERROR( n|π| , ε)
step ← step / 2
if n
|π| - err > 0.5 then
e ← e + step

else if n
|π| + err < 0.5 then

e ← e - step
end if

end for
return e

end function

distribution for an arbitrary number of bins, although we do
not address that problem here.

Once the aggregator has computed an estimate of the
median for each feature, she shares the estimates with the
peers. Each peer then generates a new, discrete feature vector
based on the median values published by the aggregator.

C. Locally-private histogram release

Once peers have finished processing their feature vectors,
the aggregator estimates the distribution over each feature
partition in a differentially private way. We can map this task
to the problem of locally-private histogram estimation.

Suppose the aggregator is trying to estimate the distribution
of feature vectors in a vertical partition with domain C. The
distribution can be represented by a histogram of length m :=
|C|, where the value in position i represents the number of
peers who have the feature vector represented by the value
ci ∈ C. Each peer shares a single "local histogram," a bit
string of length m indicating whether or not they have each
ci. Without perturbation, each peer would share a bit string
with exactly one bit set to 1. Here we explore the ways a peer
can perturb its bit string to satisfy differential privacy.

Random response: A simple way to achieve local differential
privacy is via random response. Each peer reports their real
value, x = ci, with some probability p. With probability 1− p
they choose a value from the rest of the domain, C\{ci}, and
report that instead. Basic random response achieves local ε-
differential privacy with ε = ln(m· p

1−p ) [21]. In the histogram
setting, the peer first generates a perturbed categorical value
x′ ∈ C according to the method described. They then send
a perturbed bit string, B′ ∈ {0, 1}m, in which the bit
corresponding to the value x′ is 1 and all other bits are 0.

RAPPOR – Bitwise perturbation: RAPPOR is another set of
methods for bitwise perturbation [11]. Using basic, one-time
RAPPOR, each peer sends a length-m bit string in which each
bit is perturbed independently. If B is a peer’s local histogram,
each bit Bi ∈ B is reported as B′i according to

B′i =

{
Bi, with probability p
1−Bi, with probability 1− p

where p is a tunable privacy parameter. This technique is
essentially the concatenation of m binary random responses,
with each one indicating whether the peer has a specific value.
Basic one-time RAPPOR achieves ε-differential privacy with
ε = ln( p2

(1−p)2 ).

(p, q)-perturbation: We propose a slight generalization of
the one-time RAPPOR algorithm which treats 0 and 1 bits
asymmetrically. Specifically, if the peer’s true bit is a 1, the
perturbed bit is set to a 1 with probability p. If the true bit is
a 0, the perturbed bit is set to 1 with probability q; q < p. If
q = 1− p, our method is equivalent to one-time RAPPOR.

Theorem 1: The bit-string perturbation method described
above is ln(p(1−q)(1−p)q )-differentially private.

Theorem 1 is proven in the appendix. As we will show,
adding an extra degree of freedom to the bit-string perturbation
allows us to achieve slightly better expected error, especially
when cardinality is high or privacy requirements are low.

D. Histogram estimation and error minimization

Each one of the perturbation methods described above
yields a noisy histogram, each “bar” of which is an approx-
imate count of the number of peers in the group who have
a specific categorical value. The noisy counts collected by
the aggregator are skewed away from the actual counts in
the dataset, so some post-processing is necessary to achieve a
better set of estimates. Once the aggregator has computed an
estimate of the dataset’s histogram, she generates a synthetic
set of training data by sampling from the histogram and
converting categorical values back into feature-label vectors.
These data are fed into the learning algorithm described in
section VI-B.

Here we describe the histogram estimation process, and
discuss how to minimize the expected error of the final
histogram. Let n be the total number of peers in the group,
and ni be the number of peers who have a particular value
ci ∈ C. Let ñi be the noisy count collected by the aggregator.
The aggregator can achieve a better estimate of ni, which we’ll
call ṅi, with the following:

ṅi =
ñi − qn
p− q

The expected value of ṅi is the real value: E[ṅi] = ni.

1) Expected error: In order to compare perturbation tech-
niques, we will look at the expected error of each. We are
particularly interested in the accuracy of the type estimate,
TX : the l1-normalized histogram which describes the relative
frequency of each value. We will attempt to minimize the
expected l2-norm error of the noisy type estimate, ṪX .



Theorem 2: The expected type estimate error for (p, q)-
perturbation is given by:

E‖ṪX − TX‖2 =

√
(m− 1)q(1− q) + p(1− p)

(p− q)
√
n

(4)

Theorem 2 is proven in the appendix. We can use equation
4 to compute the expected error of one-time RAPPOR by
substituting 1−p for q. Likewise, we can compute the expected
error of random response by substituting 1−p

m−1 for q.

2) Minimizing error with respect to ε: Let
fX(m,n, p, q) := E‖ṪX − TX‖2 be the error function.
In general, m and n are determined by the structure of the
problem. The privacy parameter ε is a function of p and q,
as shown in 1, so if m,n, ε are fixed, q is determined by p.
Therefore, we are interested in minimizing fX with respect
to q.

The univariate fX(p) is convex on p ∈ (0, 1), so error
is minimized where d

dpfX = 0. Let λ := eε. The error is
minimized at:

pmin =
1

λ2 − 1

(
λ2 +mλ− λ−√

(m− 1)(λ3 + λ) + ((m− 1)2 + 1)λ2
) (5)
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Fig. 2: Optimal p and q as a function of variable cardinality.
pmin and qmin are the values for p and q which minimize
expected error for a given cardinality m. As m grows, pmin
approaches 1

2 . The dashed lines show the equivalent pertur-
bation probabilities under basic one-time RAPPOR. Here, we
have fixed ε = 1.

Figure 2 shows the relationship between m and pmin, qmin
for fixed ε. At m = 2, when the feature is boolean, pmin is
equal to the p such that p = 1−q. This is the value for p used
by basic one-time RAPPOR. As the cardinality m grows, the
error-minimizing p approaches 1

2 .

3) Comparing perturbation techniques: We have described
three different techniques for achieving local differential
privacy: random response, one-time RAPPOR, and (p, q)-
perturbation, a generalization of RAPPOR. We’re interested in
determining which method will minimize expected error for a
given set of parameters.
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Fig. 3: Expected type estimate error as a function of ε and m
at n = 10, 000 peers. On top, m = 16; on the bottom, ε = 1.

Figure 3 shows the l2 error incurred by each technique for
various values of ε and m. In our setting, (p, q)-perturbation is
a strict, if slight, improvement over one-time RAPPOR. The
difference in error only becomes relevant at high values of ε.
For low m and high ε, random response is the most effective
perturbation method. For low ε and high cardinality, (p, q)-
perturbation is optimal.

Since expected error can be computed with a simple
equation, AnonML peers can determine the error-minimizing
method of perturbation before each data exchange.

E. Privacy Budget

One of the earliest results in the field of differential privacy
was that if the same data are released privately multiple times,
the epsilons "add up." More formally, if there are k releases of
the same dataset under differentially private mechanisms with
parameters ε1, ..., εk, the dataset is protected by (

∑k
i=1 εi)-

differentially privacy [7].

Under our system, each peer releases multiple private
bit strings for histogram estimation. Each bit string release
contains information about several features. Even if the feature
subsets are mutually independent, the release of kh bit strings
involves kh separate releases of the label value. If each
histogram is released with εh-differential privacy, the system
achieves (khεh)-privacy with respect to the label.

Median estimation requires another set of private queries,
each of which asks for a single binary attribute of a single fea-



ture. If we assume the features are independently distributed,
the privacy cost is accrued by the privacy budget for each
feature, which is separate from the privacy budget for the label.

Let εjh be the privacy parameter for the jth feature subset
historgram release, and let εh(i) be the parameter for the
feature subset containing feature i. Let εie be the parameter
for the median estimate of feature i. Then the total privacy
budget for a single feature is εif = εh(i) + εie, and the budget
for the label is εl =

∑kh
j=1 ε

j
h.

If a peer has kf features and releases private histograms
for kh feature subsets, the total privacy budget must be

εT = max
(

max
1≤i≤kf

(εif ), εl

)
(6)

VIII. RESULTS

We tested AnonML model generation on a number of
datasets to assess its performance in real-world scenarios.
Using what we consider to be reasonable values for ε, it
was possible to generate useful, performant models on some
problems. From this, we conclude that there may be a great
deal of problems which can be solved with our system.
However, further research should investigate what kinds of
problems are amenable to locally-private learning.

A. Datasets

We primarily tested and evaluated our system with two
datasets: a set of MOOC user data from the EdX platform and
a US census release. Both datasets comprise simple numeric
or categorical values and both have a binary label.

1) EdX: predicting dropout: We had access to raw data
from a number of popular 2012/2013 MIT EdX online classes
[14] collected with the MOOCDB system [22]. The data
comprises rich, fine-grained logs of every student’s interactions
with the courseware, including clicks, problem submissions,
interactions with lecture videos, forum posts, wiki edits, etc.

Our classification problem is the following: given a stu-
dent’s data up to and including week i of a class (and the fact
that they were still enrolled at week i), predict whether the
student would drop out before week j. The examples in this
paper use i = 6 and j = 10. We processed rich log data into
a set of 13 features, which are all numeric, continuous, and
independent.

2) Census: predicting salary: We used the "Adult Data
Set" of census data from the UCI machine learning repository
[23]. The dataset contains 15 features on 48,842 individuals,
including education level, age, sex, and marital status. The
task is to predict whether a given person makes more than
$50,000 per year. There are six numeric features, including
age and capital gains, and eight categorical features, including
marital status and occupation area. We performed manual
bucketing on some categorical features in order to reduce
cardinality (e.g. by reducing the "nation of origin" feature
into just "US" and "Non-US" categories), and removed two
redundant or unnecessary features (e.g. "education level" and
"years of education" carried the same information).
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Fig. 4: Comparison of AnonML with other ensemble learning
methods on unperturbed data. We used five peer partitions and
as many non-overlapping feature subsets as possible.

B. Comparison with traditional methods

First we tested our model-generation technique on raw,
unperturbed feature data. Many of the features are high-
cardinality categorical or continuous variables. We tested both
with and without binary feature binning. This mode does not
offer any privacy guarantees, but gives a ceiling for attainable
performance with privacy, and demonstrates that our vertical-
partitioning method is sound. The results are in figure 4.

C. Performance with privacy

Next, we tested the problems with privacy-preserving bin-
ning and data release. For all tests, continuous features were
binned into binary features using median estimation, and AUC
scores are an average of 500 trials.

Figure 5 shows AnonML’s performance on various prob-
lems under different privacy budgets. The dashed lines indicate
the performance of our model without any perturbation. In
those tests, all features were binned around their true medians,
and all histograms were known precisely. In 5a, tests were
performed with two sets of three random feature on each of
five peer partitions, while in 5b, each peer was queried for
two "sets" of one feature each – peers returned just a single
feature and label at a time. The privacy parameter for subset
perturbation (εh) is shown on the top axis, and the total privacy
budget (εT ) is shown on the bottom. In all tests, the privacy
parameter for median estimation, εe, was equal to εh.

For all datasets, utility approached the optimum asymp-
totically as a function of εT . Sacrificing privacy increased
performance, although the returns diminished as εT grew.
For both EdX datasets, the single-feature models approached
optimal performance much more quickly as a function of ε
than the three-feature models. However, on the census dataset,
models with three features per subset performed just as well as
those with one feature per subset, indicating that joint feature
distributions were more important than in the other datasets.
Overall, we found AnonML’s tradeoffs between utility and
privacy to be reasonable and encouraging.
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Fig. 5: Model performance as a function of εT on different datasets. All experiments are mean values from 500 trials. Dotted
lines represent performance without any perturbation on each dataset. Note that the performance curves for the EdX datasets,
3.091x and 6.002x, tend towards their asymptotes much more quickly in 5b than in 5a. The curve for the Census dataset is
nearly identical in both.

D. Optimal partition classifiers

In our tests, we found decision trees to be effective partition
classifiers in low-privacy and high-cardinality settings, and
logistic regressions to be more effective with low-cardinality
variables or with lots of perturbation. Additionally, we found
f1 score to be the most effective metric for scoring classifiers
in order to optimize for the resulting ensemble’s f1 and
ROC/AUC.

E. Tuning parameters

AnonML has several parameters which can be tuned by the
aggregator to maximize performance.

– Partitions (kp): Splitting the dataset into more horizontal
partitions means more classifiers can be trained and tested
with a single query to each peer. The trade-off is that
fewer peers’ data is used to generate each classifier, which
means higher expected histogram error.

– Subset size (ks): Larger feature subsets capture more
information about joint feature distributions, but cause
more noise to be added to each histogram for fixed ε.

– Subsets per partition (kh): Requesting more feature sub-
sets from each peer captures more information. For a fixed
εT , more subsets per peer means lower εh for each subset.
Some peers may prefer to keep features more private in
this way.

Figure 6 shows the results of experiments with varying
subset sizes, and fig. 7 shows how model performance re-
sponds to different partition sizes with a fixed subset size. All
experiments in figures 6 and 7 were performed on the census
dataset using logistic regression as the partition classifier.
Our experiments showed that using multiple partitions (when
subset size is greater than 1) offered a significant boost to
performance, with somewhere between kp = 8 and kp = 16
appearing to be the optimal value for subset size 3.

Subset size also had noticeable effect on performance. In
general, for the higher-privacy (lower ε) domain, using smaller
feature subsets yielded consistently better performance. With
less privacy, subset sizes of two and three became very slightly
preferable. Overall, we found that the best choice was usually
a subset size of one – that is, each (feature, label) pair being
perturbed and sent independently. This was especially true for
the EdX datasets.

IX. DISCUSSION

We have made two main contributions in this paper. First,
we have explored the extent to which it is possible to build
useful discriminatory models with locally-private data. Second,
we have presented a practical, end-to-end system that enables
such learning with practical and theoretical privacy guarantees.
In our tests, we have shown that AnonML can perform
well on real-world prediction problems while satisfying local
differential privacy.

One interesting result of our tests is that our technique of
median estimation and binary binning performed quite well
on some datasets. The features in the EdX datasets all began
as continuous values, so binary binning destroyed most of
the information available. However, as shown in figure 4, the
performance of the unperturbed 3.091x model after binning
was nearly identical to the AnonML model trained on unper-
turbed continuous variables. The 6.002x and census datasets
suffered more significant performance dropoffs from binning.
We remain optimistic about the possibilities of learning with
extreme cardinality reduction.

Another result is that small feature subsets consistently
performed better than large ones. In other words, with pri-
vacy a factor, learning with the joint distribution of many
features often hurt performance more than it helped. This is
understandable: the expected error of the type estimate grows
exponentially in subset size.
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Fig. 6: Model performance response to the number of features per subset on the census dataset. 6a and 6c used 5 peer partitions
while 6b and 6d used 20 peer partitions. All ROC/AUC values are the mean of 400 trials. The dotted line represents performance
without any perturbation. With 5 partitions, overall peak performance was achieved at a subset size of 3, and with 20, performance
was slightly better at a subset size of 2 in the high-privacy domain.

For the datasets we tested, it was more important to keep
expected error low than to learn joint feature distributions.
However, we note that our experiments used a new set of
random feature subsets for each test. With larger feature subset
sizes, the variance of the performance of each model was
much greater, and some sets of feature subsets were much
more performant than others. This suggests that skilled data
scientists may be able to specify feature subsets which can
outperform single-feature models in spite of the greater error.

A. Differential privacy and anonymity

Our system comprises two privacy-preserving techniques.
Anonymous networking, described in section V, ensures that
the aggregator cannot link any two feature packets to the same
peer. Differentially private data sharing, described in section
VII, gives theoretical guarantees about the privacy of data in
the whole system. Neither one, alone, can promise perfect
privacy. Anonymous routing hides the network provenance of
data, but it does not protect users from revealing sensitive
information in the data itself. Differential privacy bounds
the information an aggregator can learn from any one data

release; however, if an aggregator knows a private release came
from a particular peer, she can update her prior beliefs about
the peer in a potentially meaningful way. With AnonML, a
nosy aggregator faces two complementary barriers. Differential
privacy ensures she cannot learn anything concrete about any
peer or the group as a whole, and anonymous networking
ensures that she cannot link any data release to any peer
with certainty. Together, these techniques allow peers to share
private, sensitive data with confidence.

B. Applications

Our system is suitable for a variety of learning problems
and scenarios where people do not want to trust a central
authority. Here, we list a few potential use cases for AnonML:

1) A corporation or institution wants to provide a service
which uses a classifier learned from its users’ sensitive
personal data. The data may be excessively revealing or
highly regulated, so the organization does not want the
liability of storing it on their servers. The organization
only collects and uses sensitive data via AnonML.
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Fig. 7: Model performance response to the number of horizon-
tal partitions, kp, with 3 features per subset. The dotted line
represents performance without perturbation. All ROC/AUC
values are the mean of 400 trials. For this trial, peak perfor-
mance was achieved between 8 and 16 partitions.

2) Many people use a particular piece of software such as a
ride-sharing service. A central authority collects their data
but does not allow others to access it. A group of users
decide they want to use their own data to train a machine
learning model that the authority does not provide for
them, for example, to predict when ride prices will surge.
One user acts as an aggregator and the rest act as peers
and share sanitized data.

3) A new startup is trying to break into an industry with an
established incumbent. The startup wants to gather data
about when and why the incumbent’s users leave their
service. They offer a small amount of compensation for
each of the incumbent’s users to share their usage data in
a privacy-preserving way.

C. Future work

The problem of private histogram estimation is relatively
well-studied, but its applications to machine learning are not.
A more thorough investigation into how best to use locally-
private histogram releases to build machine learning models

might incorporate heavy-hitter estimation [24]. In addition, l2-
norm error may not be the best utility function our actual needs
(i.e. machine learning performance) – a rigorous theoretical
analysis akin to [21] would be desirable.

We used simple logistic regression and decision trees as the
basis for AnonML’s ensemble classifiers. It may be possible to
tune these mechanisms, or find different ones, in order to better
learn on noisy histograms. Our tactic of median estimation
for feature binning worked surprisingly well, but it may not
work for all problems; we recommend investigating higher-
cardinality private binning and metrics other than median. To
create ensembles, we used cross-validation scores on the noisy
partitions. It may be possible to get more accurate scores,
and better classifier performance, with another set of privacy-
preserving queries to the data holders.

APPENDIX

Theorem 1: (p, q)-perturbation ln(p(1−q)(1−p)q )-differentially
private.

Proof: Let B be the universe of possible real bit strings:
strings of length m in which one bit is set to 1 and the rest
are 0. Let B′ be the universe of possible perturbed bit strings,
{0, 1}m. Let b ∈ B be a real bit string, and let b′ ∈ B′ be a
set of perturbed bits.

P (B′ = b′|B = b) =
∏

j∈{1...m}

P (B′j = b′j |Bj = bj)

Since bi is 1 and all other real bits are 0, we have

P (B′ = b′|B = b) =pb
′
i(1− p)1−b

′
i×∏

j∈{1...m}\{i}

qb
′
j (1− q)1−b

′
j

We need to show that, given two peers with any two real
bit strings b and b∗, respectively, the probability that either
one will generate the perturbed string b′ is similar. Let i be
the index of the 1 bit in b, and let j be the index of the 1 bit
in b∗. Formally,

eε ≥ max
b′∈B′;b,b∗∈B

P (B′ = b′|B = b)

P (B′ = b′|B = b∗)

=
pb

′
i(1− p)1−b′i

∏
k∈{1...m}\{i} q

b′k(1− q)1−b′k

pb
′
j (1− p)1−b′j

∏
k∈{1...m}\{j} q

b′k(1− q)1−b′k

Because the strings b and b∗ differ in at most two spots,
bits i and j, this can be simplified to

eε ≥ pb
′
i(1− p)1−b′iqb

′
j (1− q)1−b

′
j

pb
′
j (1− p)1−b′jqb′i(1− q)1−b′i

This expression is maximized when i 6= j and b′i 6= b′j . In
that case,

ε = ln
p(1− q)
(1− p)q



Theorem 2: The expected error for (p, q)-perturbation is
given by:

E‖ṪX − TX‖2 =

√
(m− 1)q(1− q) + p(1− p)

(p− q)
√
n

(7)

Proof: Let ni be the number of peers who have a value
ci, which means n − ni peers do not. Let X̃i be a random
variable representing the number of ci reported (before the
normalization step). We can think of X̃i as being drawn from a
combination of binomial distributions, X̃i ∼ B(ni, p)+B(n−
ni, 1− q). The variance of X̃i is

Var[X̃i] = nip(1− p) + (n− ni)(1− q)q

After collecting the initial noisy count, ñi ∼ X̃i, the
maximum likelihood estimation is applied to compute the final
estimate, Ẋi. The expected value of Ẋi is the true value, ni,
and its variance is

Var[Ẋi] =
nip(1− p) + (n− ni)(1− q)q

(p− q)2

We’re interested in a type estimate TX for X: the portion of
the population that has each ci ∈ C. This will be a vector which
sums to 1, and our estimate can be computed as ṪX = Ẋ

|Ẋ| .
The expected Euclidean distance between our estimate and the
unperturbed TX is

E‖ṪX − TX‖2 =
1

n

√√√√ m∑
i=1

Var[Ẋi]

=
1

n(p− q)

√√√√ m∑
i=1

nip(1− p) + (n− ni)q(1− q)

=
1

n(p− q)
√
mnq(1− q) + n(p(1− p)− q(1− q))

=
1√

n(p− q)
√

(m− 1)q(1− q) + p(1− p)
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