
Learning Representations for Log Data in
Cybersecurity

Ignacio Arnaldo1, Alfredo Cuesta-Infante2, Ankit Arun1, Mei Lam1, Costas
Bassias1, and Kalyan Veeramachaneni3

1 PatternEx Inc, San Jose, CA, USA,
iarnaldo@patternex.com,

2 Universidad Rey Juan Carlos, Madrid, Spain
alfredo.cuesta@urjc.es

3 MIT, Cambridge, MA, USA
kalyan@csail.mit.edu,

Abstract. We introduce a framework for exploring and learning rep-
resentations of log data generated by enterprise-grade security devices
with the goal of detecting advanced persistent threats (APTs) spanning
over several weeks. The presented framework uses a divide-and-conquer
strategy combining behavioral analytics, time series modeling and repre-
sentation learning algorithms to model large volumes of data. In addition,
given that we have access to human-engineered features, we analyze the
capability of a series of representation learning algorithms to complement
human-engineered features in a variety of classification approaches. We
demonstrate the approach with a novel dataset extracted from 3 billion
log lines generated at an enterprise network boundaries with reported
command and control communications. The presented results validate
our approach, achieving an area under the ROC curve of 0.943 and 95
true positives out of the Top 100 ranked instances on the test data set.

Keywords: Representation learning, Deep learning, Feature discovery,
Cybersecurity, Command and Control detection, Malware detection

1 Introduction

This paper addresses two goals. First, it proposes methods to develop models
from log and/or relational data via deep learning. Second, it applies these meth-
ods to a cybersecurity application.

Consider advanced persistent threats (APTs). These attacks are character-
ized by a series of steps: infection/compromise, exploitation, command and con-
trol, lateral movement, and data exfiltration [1,19]. In this paper, we focus on
the detection of the “command and control,” step, i.e. the mechanisms used
to maintain a communication channel between a compromised host inside the
targeted organization and a remote server controlled by the attacker. Although
this phase of the attack can span weeks or months, its detection requires sig-
nificant sophistication. Savvy attackers minimize their footprints by combining



2

active and stealthy phases, and establish communication channels via unblocked
services and protocols, therefore blending in with legitimate traffic.

When log data is analyzed over a period of several weeks, these commu-
nications exhibit distinctive network profiles [9]. In particular, compromised
machines will periodically attempt to communicate with remote server(s), and
repeatedly establish lightweight connections through which they receive new in-
structions. During a minor fraction of these connections, the compromised ma-
chine will download a larger amount of data, which corresponds to a software
update [19]. The frequency and network profile of these connections will depend
on the particular malware family or exploit involved in the attack [15]. Despite
these aforementioned observations, most machine learning-based detection tech-
niques only analyze individual connections (see [21] and therein). Given the large
volume of data, and the number of connections that must be monitored and an-
alyzed, it is a challenge to identify behavioral patterns over multiple weeks of
data. 4

This example application identifies two pressing needs that could be ad-
dressed by deep learning. They are: (1) the development of automated methods
to identify patterns, a.k.a features by processing data collected over long periods
of time and (2) the identification of patterns that can deliver highly accurate de-
tection capability. In recent years, data scientists have made tremendous strides
in developing deep learning-based models for problems involving language (which
use text as data) and vision (which use images as data). Deep learning has turned
out to be so powerful in these two domains because it is able to produce highly
accurate models by working with raw text or images directly, without requiring
humans to transform this data into features. At its core, almost all deep learning
models use multi-layered neural networks, which expect numeric inputs. To gen-
erate these inputs, images or text are transformed into numerical representations
(often designed by humans).

In order to develop similar solutions for log or relational data, our first goal
is to identify ways to process and generate numerical representations of this type
of data. To maximize both quality and efficiency, this step requires a compromise
between the amount of human knowledge we incorporate into developing these
representations, vs. how much we exploit the ability of deep neural networks
to automatically generate them. In this paper, we present multiple ways log
data can be represented, and show how deep learning can be applied to these
representations. Our contributions through this paper are:

– Deep learning for log/relational data: We present multiple ways to rep-
resent log/relational data, and 4 different deep learning models that could
be applied to these representations. To the best of our knowledge, we are the
first to elucidate steps for generating deep learning models from a relational
dataset.

4 Depending on an organizations size and level of activity, devices such as next-
generation firewalls can generate up to 1TB of log data and involve tens of millions
of entities on a daily basis.



3

– Applying deep learning to cybersecurity applications: We apply these
methods to deliver models for two real world cybersecurity applications.

– Comparing to human-driven data processing: We demonstrate the ef-
ficacy of the deep learning models when compared to simple aggregations
generated by human-defined standard database operations.

The rest of this paper is organized as follows. Section 2 describes the steps
required to process raw logs and obtain data representation suitable for deep
learning. Section 3 introduces the collection of deep learning techniques. We
build upon these techniques and augment them with human-generated features
for better discovery in Section 4. The experimental work and results are presented
in Section 5 and Section 6. Section 7 presents the related work, and we conclude
in Section 8.

2 Data transformations and representations

In this section, we describe a generic sequence of data transformation steps
human data scientists can take to derive features from timestamped log data.
With these transformations, we identify the data representations that can be fed
into a deep learning technology.

Rep 1: Raw logs In a nutshell, logs are files that register a time sequence of
events associated with entities in a monitored system5. Logs are generated
in a variety of formats: json, comma-separated-values, key-value pairs,
and event logs. (Event types are assigned unique identifiers and described
with a varying number of fields).

Rep 2: Structured representation The first step entails parsing these logs
to identify entities (e.g, IP addresses, users, customers) relationships be-
tween entities (e.g., one-to-many, many-to-many), timestamps, data types
and other relevant information about the relational structure of the data.
The data is then stored either in the relational data model (database) or
as-is, and the relational model is used to process the data as needed. Either
way, in this step, humans either come up with a relational model using their
prior knowledge of how data is collected and what it means, or acquire this
knowledge by exploring data.

Rep 3: Per entity, event-driven time series: Once the relational structure
is identified, a temporal sequence of events associated with a particular in-
stance of an entity is extracted. For example, we may identify all the events
associated with a particular IP address. These events are usually irregular in
time, and each event is described with a number of data fields. For example,
a sequence of network connection events associated with an IP address is
described using ports, protocols, the number of bytes sent and received, etc.

5 In enterprises today, logs are generated by network devices, endpoints, and user
authentication servers, as well as by a myriad of applications. Each device registers
a certain kind of activity, and outputs different information. Note that even devices
belonging to the same category (eg. network devices such as firewalls) report different
information and use a different format depending on the vendor and version.



4

Rep 4: Per entity, aggregated, regular time series: The next step involves
defining a time interval and performing simple aggregations for each irregular
time series.6 For example, for any given IP address, we can average the
number of bytes sent and received per connection over a time interval of
an hour. The output of this step is a regular multivariate time series for
each entity-instance. The resulting data representation can be viewed as
a multidimensional array D ∈ Rn×t×p where n is the number of entity-
instances, t is the number of time steps, and p is the number of aggregations.7

Rep 5: Entity-feature matrix: This last step consists of generating an entity-
feature matrix, in which each row corresponds to an instance of the entity and
each column is a feature. This can be directly generated from Rep 3 through
a process known as “feature engineering” or Rep 4. Given a multivariate
time series D ∈ Rn×t×p, the simplest way to generate this representation is
to “flatten” the data, resulting in a n × (t × p) feature matrix. A common
alternative is to perform another aggregation step, this time on top of the
regular time series. In the latter case, the result is a n× p′ matrix, where p′

is the number of second-level aggregations.

Data representations amenable for deep learning One important benefit
of deep learning models is their potential to alleviate the feature engineering
bottleneck. Below we consider the nuances of the application of deep learning
models to different representations.

1. Input data must be separated into independent examples, much like images.
Thus, it is necessary to identify the relational structure, and to separate data
by entity-instances. Automation of this step is possible, but is beyond the
scope of this paper.

2. Deep learning techniques can be applied to the third (per entity event-driven
time series), fourth (aggregated regular time series), and fifth (entity-feature
matrix) representations.

3. Note that while deep learning models can be applied to entity-feature ma-
trices (last representation), we consider that this approach does not leverage
their potential for feature discovery, since multiple levels of aggregations are
defined by humans.

4. In this paper, we leverage deep learning techniques to learn features on
regular aggregated time series (Rep 4.).

3 Learning representations using deep neural networks

We describe 4 different methods suitable for learning representations out of Rep
4. 1) Feed-forward neural networks, 2) Convolutional networks, 3) Recurrent

6 For numeric fields, aggregations include minimum, maximum, average, and standard
deviation; for categorical values, common aggregations are count distinct and mode.

7 For example, if we consider a dataset spanning over 10 days with n = 1000 entity
instances, a time step t = 1 day, and p = 20 aggregations, the result of this step
would be a 1000 × 10 × 20 array.



5

f1
t-11 t

f2f3f4f5
f6

f1
t-11 t t

f2f3f4f5
f6

f1
t-9

f2f3f4f5
f6

Time

0 1
SoftMax layer
Fully connected layer
Pooling layer
Convolution layer
LSTM layer

Time

0 1

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

Time

0 1

Fig. 1: FFNN-based (left), CNN-based (center), and LSTM-based (right) time
series classifiers. For clarity, not all the connections are shown.

neural networks with LSTMs, and 4) Autoencoder + random forest pipeline.
The first three approaches can be categorized as methods for supervised feature
extraction or feature learning and the last method (without random forest) can
be categorized as an an unsupervised approach to feature learning.

3.1 Feed-forward neural networks

Feed-forward neural networks (FFNNs) are composed of one or more layers of
nodes. The input layer consists of p× d neurons (one for each value in the input
data), while the output layer is composed of m nodes, where m is the number
of classes in the data. Intermediate layers are composed of an arbitrary number
of nodes, with each layer fully connected to the next one. Figure 1 (left) shows
a FFNN trained to classify multivariate time-series.

3.2 Convolutional networks

Convolutional networks (CNNs or ConvNets) are FFNNs with special connec-
tion patterns (see Figure 1), and have been widely applied for image and video
recognition. At the core of CNNs are convolutional filters or kernels. These fil-
ters are trained to identify patterns in reduced regions of the input data (small
shapes in the case of images, or patterns in consecutive data points in the case of
time series). CNNs are composed of an arbitrary number of such filters, and are
therefore capable of identifying a wide variety of low-level patterns in the data.
The same set of filters is applied across all the input data, and for each region of
the input data where they are applied, the filter generates an output value that
indicates how similar the input region is to the filtered pattern. The output of
the convolutional layer is generally fed to a pooling layer, which applies a local
maximum operation. Intuitively, this operation provides robustness to determine



6

whether a pattern exists in a region of the input data, independent of its exact
location. The outputs of the last convolutional/pooling layers are fed to a fully
connected feed-forward neural network. As with standard FFNNs, the final layer
is composed of m nodes, where m is the number of classes in the data.

By stacking several layers of convolutional filters and pooling layers, CNNs
can identify patterns involving larger regions of the input data. This is a clear
example of a “deep” architecture, where lower layers learn to detect building
blocks of the input data, while the last layers detect higher-level patterns. It is
important to stress that all the parameters (weights) in CNNs are learned during
the training process. That is, the networks learns to identify the local patterns
that ultimately help them to discriminate between data categories.

In the case of multivariate time-series data, CNNs can exploit locality to learn
temporal patterns across one or more variables. Note however, that the relative
position of features is generally arbitrary (adjacent features are not necessarily
related). This observation motivates the use of convolutional filters of width= 1;
that is, filters that learn patterns in each feature independently. Another valid
possibility explored in this paper considers filters of width= p, where p is the
total number of input features. In this last case, the network will learn filters or
patterns involving all the features.

3.3 Recurrent neural networks with LSTMs

Long short-term memory networks (LSTMs) are a special case of recurrent neural
networks first introduced in [11]. The main characteristic of these architectures
is the use of LSTM cells. LSTM cells maintain a state, and generate an output
given a new input and their current state. Several variants of LSTM cells have
been proposed, we use the LSTM variant introduced by [17].

Right panel in Figure 1 shows a high-level representation of a LSTM archi-
tecture. The input data is a time-ordered array that is fed sequentially to the
network. At each time step, the LSTM cells update their state and produce an
output that is related both with the long-term and short-term (i.e. recent) in-
puts. The final output of the LSTM architecture is generated after propagating
all the input sequence through the network.

LSTMs architectures are a solution to the vanishing and exploding gradient;
they are said to be superior to recurrent neural networks and Hidden Markov
Models to model time series with arbitrarily large time gaps between impor-
tant events. With respect to FFNNs and CNNs, their main potential advantage
is that inputs to LSTM architectures are sequences of arbitrary length, there-
fore enabling us to train and reuse a single model with time series of different
lengths. These two characteristics of LSTMs are particularly relevant for infor-
mation security analytics, where the goal is to detect attacks that are generally
implemented in steps spread over time, and where modeled entities exhibit very
different levels of activity, therefore generating time series of varying length.



7

3.4 Autoencoder + Random Forest pipeline

Autoencoders are multi-layer feed-forward neural networks. The input and out-
put layers have the same number of nodes, while intermediate layers are com-
posed of a reduced number of nodes. We consider autoencoders that are com-
posed of three hidden layers. The first and third hidden layers count p/2 neurons,
while the second, central layer is composed of p/4 neurons, where p is the dimen-
sionality of the data. The tan-sigmoid transfer function is used as an activation
function across the network. The network is trained to learn identity-mapping
from inputs to outputs. The mapping from inputs to intermediate layers com-
presses the data, effectively reducing its dimensionality. Once the network is
trained, we can compress the data by feeding the original data to the network,
and retrieving the output generated at the central layer of the autoencoder. The
output of the central layer is then fed to a random forest classifier.

4 Combining human defined and learnt features

In this section, we determine whether feature discovery techniques are contribut-
ing to improvements in classification accuracy. We do this by separating the
aggregated values corresponding to last time step, generated as part of rep 4,
from the historic data (previous time steps), and applying the feature discovery
methods only to the historic data. All the presented techniques are extensions
of the methods described in Section 3.

Let Di = Di
hist ∪ Di

last be the multivariate time series associated to entity
i, and let d be the number of time steps in the series. Therefore, Di

last is the
aggregated time series vector corresponding to the last time step data and Di

hist

is the time series composed of the previous (d− 1) vectors. In our case, the time
unit is 1 day, and we consider d = 28 time steps. We introduce a pipeline where:

– Deep learning methods learn a set of “time series features” from Dhist,
– These learned features are concatenated with Dlast.
– The combination of learned “time series features” and Dlast is fed into a

random forest classifier.

This way, feature discovery techniques learn a set of “time series features” while
the final predictions are generated by interpretable models. By analyzing the
grown decision trees, we determine the relative importance of Dlast and the
automatically discovered features. In the following, we describe unsupervised
and supervised techniques to discover new features from historic data.

4.1 Extension of dimensionality reduction methods (RNN)

Given a time series dataset D = Dhist ∪ Dlast, we first apply a dimensionality
reduction technique to Dhist (historic feature values). The outputs of the dimen-
sionality reduction are combined with the last time step’s feature vector and fed
into a random forest as depicted in Figure 2. We use the same dimensionality
reduction technique explained in Section 3, namely RNNs or autoencoders. In
the following, we refer to this extension as ‘RNN + RF ext’.



8

f1
t-12 t-1

f2f3f4f5
f6

t

Dimensionality
reduction

f1f2f3f4f5f6

y1y2y3
y4

f1f2f3f4f5
f6

t

f1f2f3f4f5
f6

TimeTime

Fig. 2: Dimensionality reduction and random forest pipeline (left), and FFNN-
based model used as time-series feature generator (right)

4.2 Extension of supervised deep learning (FFNN, CNN, LSTM)

We consider the models depicted in Figure 3. The designed models have two
separate inputs: Dhist and Dlast. While Dhist undergoes a series of nonlinear
transformations in the left layers of the network, Dlast is directly connected to
the last layers of the network. With this design, we expect to force the network to
learn features from Dhist that are complementary to Dlast. Once trained, these
models can be used in two fashions: 1) as standalone models used to predict on
unseen data, 2) as “feature generators” used to extract features for unseen data.
In this paper we adopt the second strategy, and feed the extracted features into
a random forest classifier. We illustrate this strategy in Figure 2 (right).

We now detail the steps involved both in model training and deployment
using these “feature generators”. At training time, we proceed as follows:

1. Train the models in Figure 3 via backpropagation using the dataset D.
2. Once the model is trained, propagate D through the network and retrieve the

outputs generated at the last layer of the left section. Note that the output
Dts will be a matrix of shape n× q, where n is the number of examples and
q is the number of learned features.

3. Concatenate Dlast and Dts to obtain Dconc, a new dataset with shape n ×
(p + q). Note that p is the number of human-engineered features.

4. Train a decision tree classifier with Dconc

To predict on unseen data D′, we proceed as follows:

1. Propagate D′ through the network and retrieve the outputs generated at the
last layer of the left section of the network. As in the training scenario, the
output D′ts will be a matrix of shape n× q

2. Concatenate D′last and D′ts to obtain D′conc
3. Feed D′conc to the trained random forest and generate predictions.



9

f1
t-12 t-1 t-1 t-1

f2f3f4f5
f6

f1
t-12

f2f3f4f5
f6

f1
t-10

f2f3f4f5
f6

t

Time

0 1
SoftMax layer
Fully connected layer
Pooling layer
Convolution layer
LSTM layer

f1f2f3f4f5
f6

Time

0 1

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

LSTM
unit

Time

0 1

t

f1f2f3f4f5
f6

t

f1f2f3f4f5
f6

Fig. 3: FFNN-based (left), CNN-based (center), and LSTM-based (right) models
designed to learn time series features. These models present a novel structure
that enables to complement a set of existing features with new features learned
from historic data.

In the following, we refer to these method extensions as ‘FFNN + RF ext’,
‘CNN + RF ext’, and ‘LSTM + RF ext’.

5 Experimental Work

This section describes the two datasets studied in this paper, as well as the
parameterization of the models introduced in previous sections.

5.1 Real-world command and control detection dataset

We consider two months worth of logs generated by an enterprise next generation
firewall and target the detection of command and control. These log files register
approximately 50 million log lines and 150K active entities daily, summing to a
total of 3 billion log lines and 12 million analyzed entities.
Extracting daily features: In this step, we extract 32 features, describing
the activity of each entity within a 24-hour time window. The features capture
information about the number of connections, the bytes sent and received per
connection, the packets sent and received per connection, the duration of the
connections, and the intervals between connections, as well as information about
relevant ports, applications and protocols, and alerts raised by the firewall.
Labeling the dataset: To label the dataset, we use a combination of outlier
analysis and validation through VirusTotal’s [4] threat intelligence. We perform
outlier analysis (see methods in [23]) on the feature data on a daily basis, and
investigate the top outliers using VirusTotal. VirusTotal provides the latest files
detected by at least one antivirus program that communicates with a given IP



10

address when executed in a sandboxed environment. In addition, it provides the
fraction of considered antivirus software that reported the file. We consider an
IP address to be malicious if at least 5 different antivirus programs or scanners
report that malicious files are communicating with that address.

It is important to note that this intelligence-based labeling process is noisy,
not only because antivirus programs themselves might present false positives, but
because malicious files might communicate with IP addresses for purposes other
than command and control. In fact, creating and labeling a real-world dataset
is challenging in itself, both because the labeling must be performed by human
analysts, a scarce resource with very limited bandwidth, and because the context
required to determine whether a particular entity is involved in an attack is often
missing. This severely limits the number of labeled attack examples available for
offline modeling and experimentation.
Building a control dataset: We preserve all the attack examples, and sub-
sample 1% of the remaining entities, which are considered benign. The result is
a dataset composed of 89K examples. The data pertaining to the first month
(53K entities) is used to train the models, while data from the second month
(36K entities) is used for testing. It is worth noting that, although we analyze
a subsampled dataset, malicious activities remain a minor fraction (0.56%) of
the examples. This results in an extreme class imbalance, which increases the
difficulty of the detection problem.
From daily features to multi-week time series: For each sampled entity,
we build a multivariate time series in which the time step is a day, the length of
the series is d = 28 days, and the activity at each time step is described with 32
features. Therefore, our dataset can be viewed as a 89K × 28× 32 array (num.
examples × time steps × features).

5.2 ISCX Botnet Dataset

Introduced in 2014, the ISCX Botnet dataset [5] is a comprehensive dataset
released in packet capture (pcap) format which contains activity traces of 16
types of botnets, as well as legitimate traffic. To build the dataset, the authors
combined traces extracted from the ISOT botnet detection dataset [27], the
ISCX 2012 IDS dataset [18], and traffic generated by the Malware Capture Fa-
cility Project [3]. The botnet traffic is either captured by honeypots, or through
executing the bot binaries in safe environments. Table 1 summarizes the char-
acteristics of the data. It is important to note that the dataset is divided into a
training (4.9GB) and testing set (2.0GB), where the training split includes traffic
generated by 7 botnet types, while the testing set contains traffic generated by
16 botnet types. This way, the authors propose a challenging dataset to evaluate
whether models that have been trained to detect a reduced set of botnets can
accurately detect unseen botnets. In their best-performing effort, the authors
report a detection (true positive) rate of 75% and a false positive rate of 2.3%.
From pcap to flow features: We use FlowMeter [8], a network traffic flow
generator, to separate the packet capture data into individual flows. FlowMeter
aggregates flows on the basis of the 5-tuple set (Source IP, Source Port, Desti-
nation IP, Destination Port, Protocol) and a timeout parameter. Each flow is



11

Split #Flows #Src IPs #Dst IPs #Src/Dst IPs #Flow TS #Mal. TS #Ben. TS

Training 356160 7355 40502 57321 65737 38485 27252

Testing 309206 6392 17338 28657 36532 13480 23052

Table 1: Characteristics of the ISCX 2014 Botnet Dataset

Method #discov. features #layers Training algorithm

PCA + RF 16 - -

RNN + RF 8 3 (16-8-16) Adam

FFNN 16 3 (16-16-16) Stoch. grad. descent

CNN 16 2(conv+pool) + 1 fully conn. Adam

LSTM 16 1 layer with 100 LSTM cells Adam

RNN + RF ext 8 3 (16-8-16) Adam

PCA + RF ext 16 - -

FFNN + RF ext 16 3 (16-16-16) Stoch. grad. descent

CNN + RF ext 16 2(conv+pool) + 1 fully conn. Adam

LSTM + RF + int 16 1 layer with 100 LSTM cells Adam

Table 2: Description and number of features generated by the compared models

described with the following 23 features: Duration, Bytes per second, Packets per
second, Min/Max/Avg/Std packet inter-arrival times, Min/Max/Avg/Std inter-
arrival times of sent packets, Min/Max/Avg/Std inter-arrival times of received
packets, Min/Max/Avg/Std active time, and Min/Max/Avg/Std idle time.

Labeling the dataset: The dataset includes a list of malicious IPs and their
corresponding botnet types. In some cases, individual IPs are reported, but in
others, the authors report source and destination IPs as a pair. Therefore, we
label as malicious all flows that include one of the individually listed IPs (either
as source or destination), and all flows where both the source and destination IPs
match a reported pair. All remaining flows are considered benign. Although the
authors report the botnet type associated with the malicious IPs, we approach
the problem as a binary classification problem (malicious vs benign).

Flow features to time series of flows: We first aggregate all the flows that
involve the same pair of source and destination IPs (independently of ports and
protocols). Thus, for each pair of source/destination IPs, we obtain a t×p matrix,
where t represents the number of flows, and p = 23 represents the number of
features. For symmetry with the real-world dataset, we split time series into
segments of (at most) 28 flows. Note that this last step is only applied when
the pair of source/destination IPs presents more than 28 flows. This way, the
preprocessing of the training split results in a 65737 × 28 × 23 array (num.
examples × flows × features), while the testing split results in a 36532× 28× 23
array.



12

5.3 Model implementation, training, and validation

We compare the models proposed in this paper against random forests [6] and
against a pipeline composed of a dimensionality reduction step performed with
PCA followed by a random forest classifier. Note that we consider data composed
of n examples, p features, and d days. In order to apply these approaches, the
data is flattened to obtain a feature matrix with n examples and p× d features.
The resulting entity-feature matrix is suitable for training random forests. In the
case of the PCA + Random Forest pipeline, the data is projected to the prin-
cipal component space using the top j principal components, and the projected
data is fed to a random forest classifier. Its extended counterpart is referred to
as ‘PCA + RF ext’ and is analogous to the RNN-based method explained in
Section 4.1.

Table 2 shows the details of the implementation and training of the models
compared in this paper. To enable a fair comparison with methods such as
random forests or PCA, we did not parameter-tune any of the neural network-
based methods (FNN, CNN, LSTM, Autoencoders (RNN)). While this can lead
to a poor model parametrization, we are interested in these methods out-of-the-
box performance, since it is a better performance proxy for how well they will
detect malicious behaviors other than command and control.

6 Results

In this section, we compare the detection performance of the learning methods
introduced in this paper on the real-world command and control dataset and on
the ISCX 2014 botnet dataset. We also analyze the importance of automatically-
discovered features.

6.1 Real-world command and control dataset

Table 3 shows the AUROC and true positives in the top 100 compared methods
when evaluated on unseen data.
Effect of longer time span data: Our first observation is that the AUROC
achieved using 1 day of data reaches 0.923 for RF and 0.928 for PCA + RF.
However, if we use more days for training, the performance of these two methods
degrades. This degradation is noteworthy since we do not know beforehand the
length of the time necessary for the successful detection malicious behaviors.
Did augmentation help?: On average, the AUROC and number of TP in the
Top 100 for the extended methods that try to complement human generated
features (i.e methods labeled with ext) is higher than the ones that don’t. Note
that, by design, the methods CNN, LSTM, PCA + RF ext, RNN + RF ext,
FFNN + RF ext, CNN + RF ext, and LSTM + RF ext require more than one
day of data; therefore, for those methods, we do not present performance metrics
for the one-day case. We also notice that the performance of these methods does
not degrade as we increase the time span.



13

AUROC True Positives in Top 100

Method 1 day 7 day 14 days 28 days 1 days 7 days 14 days 28 days

RF 0.923 0.895 0.881 0.883 95 84 89 82

PCA + RF 0.928 0.830 0.816 0.867 86 66 68 74

RNN + FR 0.814 0.747 0.686 0.701 37 35 4 19

FFNN 0.906 0.840 0.829 0.869 7 0 0 0

CNN - 0.901 0.718 0.873 - 0 1 4

LSTM - 0.898 0.877 0.869 - 8 26 31

PCA + RF ext - 0.920 0.927 0.943 - 89 92 87

RNN + RF ext - 0.747 0.678 0.756 - 9 30 3

FFNN + RF ext - 0.929 0.888 0.912 - 92 93 92

CNN + RF ext - 0.936 0.876 0.837 - 95 89 74

LSTM + RF ext - 0.904 0.914 0.923 - 88 89 89

Table 3: AUROC and true positives in the top 100 of the compared methods
when evaluated on unseen data. Data sets are represented by their time span (1,
7, 14 and 28 days).

The best and the worst: The best AUROC is achieved using PCA + RF ext
with 28 days of data, and using CNN + RF ext with 7 days of data. These models
present AUROCs of 0.943 and 0.936 respectively when evaluated on unseen data.
However, this is only marginally better than the 0.923 baseline AUROC obtained
with a random forest classifier using one day of data. In particular, our results
show that the use of RNN + RF (autoencoders) achieves the worst detection
performance since it is unable to either detect attacks or discover new features.
Key findings: The goal of our exploration was to examine, how these methods
perform “out-of-box”. For the real world data set, based on our results, we cannot
conclusively say whether the new learning methods helped. We also posit that:

– perhaps the information present in the last day’s features is enough to ac-
curately detect command and control communications.

– the performance of those methods using FFNN, CNN, LSTM, and RNN
(autoencoders) can be improved via parameter tuning.

6.2 ISCX 2014 Botnet Dataset

Method comparison: Given that the training and testing splits contain traces
of different botnets, we perform two series of experiments. First, we compute
the 10-fold cross-validation AUROC on the training set for the models being
compared (left section of Table 4). This setup allows us to compare the models’
capacity to identify known botnets on unseen data. Second, we compute the
testing set AUROC to analyze the models’ capacity to identify unseen botnets
(right section of Table 4). The resulting detection rates are in accordance with the
results reported in [5], where the authors present very high accuracies in cases
where traces of the same botnets are included in the training and testing splits,
while the detection rates on unseen botnets drop significantly. For instance, the
AUROC of the random forest trained on individual flows drops from 0.991 to



14

CV AUROC Training Set AUROC Training/Testing Set

Method 1 flow 7 flows 14 flows 28 flows 1 flow 7 flows 14 flows 28 flows

RF 0.991 0.997 0.997 0.997 0.768 0.753 0.766 0.748

PCA + RF 0.990 0.992 0.992 0.992 0.769 0.753 0.743 0.774

RNN + FR 0.975 0.971 0.965 0.955 0.746 0.747 0.741 0.641

FFNN 0.905 0.947 0.947 0.948 0.724 0.713 0.751 0.744

CNN - 0.737 0.632 0.620 - 0.644 0.633 0.449

LSTM - 0.907 0.903 0.899 - 0.624 0.744 0.542

PCA + RF ext - 0.997 0.830 0.832 - 0.788 0.802 0.811

RNN + RF ext - 0.995 0.809 0.805 - 0.715 0.701 0.728

FFNN + RF ext - 0.978 0.949 0.986 - 0.731 0.739 0.788

CNN + RF ext - 0.929 0.936 0.849 - 0.748 0.747 0.759

LSTM + RF ext - 0.904 0.932 0.901 - 0.672 0.779 0.808

Table 4: Cross-validation AUROC on the training split of the ISCX training
split, and AUROC on the testing split of the compared methods. Data sets are
represented by the number of considered flows (1, 7, 14 and 28 flows).

0.768. As stated in [5], this performance drop shows that the trained models do
not generalize well when it comes to accurately detecting unseen botnets.

Detecting previously seen botnets: With the exception of the CNN method,
all methods achieve high cross-validation detection metrics. In particular, when
7 consecutive flows are modeled, the AUROCs range from 0.904 to 0.997. The
best cross-validation results are achieved by the random forest and PCA + Ran-
dom Forest methods, which achieve AUROCs of 0.997 and 0.992 respectively.
In both cases, considering multiple flows yields incremental benefits (from 0.991
to 0.997, and from 0.990 to 0.992). However, in general, considering multiple
flows does not systematically improve detection. While it yields improvements
for RF, PCA+RF, FFNN, FFNN+RF ext, CNN+RF ext, and LSTM+RF ext,
it results in performance decreases for RNN+RF, CNN, LSTM, PCA+RF ext,
and RNN+RF ext.

Did augmentation help?: The AUROCs of methods that complement human-
engineered features (i.e methods labeled with ext) are higher than those for the
complementary subset for FFNN, CNN, and LSTM models, and lower for PCA
and RNN.

Detecting previously unseen botnets: When it comes to detecting unseen
botnets, the best AUROCs are achieved by the models PCA + RF ext (0.811)
and LSTM + RF ext (0.808), which in both cases model segments of 28 consec-
utive flows. This represents an improvement of 5.60% and 5.21% with respect
to the baseline random forest trained with individual flows (0.768). In this case,
the AUROC of all the extended methods that complement human-engineered
features (i.e methods labeled with ext) is higher than the complementary sub-
set.

Feature Analysis: We analyze the features discovered with the models PCA
+ RF ext and LSTM + RF ext using 28 days of data (see Section 4.1 and



15

Method

Aggregated Feature Importance

All examples 7 flows or more 14 flows or more 28 flows

Human Auto Human Auto Human Auto Human Auto

PCA + RF ext 86.6% 13.4% 54.1% 45.9% 52.7% 47.3% 51.2% 48.8%

LSTM + RF ext 85.7% 14.4% 54.6% 45.4% 50.6% 49.4% 52.3% 47.7%

Table 5: Aggregated importance of human-engineered and discovered features.

Fig. 4: Feature importance as determined by a random forest classifier of human-
engineered features (blue) and automatically discovered features (red) with a
LSTM-based model. The aggregated importance of human-engineered features
is 50.6%, while that of discovered features is 49.4%. Only pairs of source/dest
IPs with 14 or more flows are considered for the analysis presented in this figure.

Section 4.2). These models are chosen for analysis because they present the
highest AUROCs (0.811 and 0.808 when evaluated on unseen data).

Given that the training and testing sets contain traces generated by different
botnets, we merge the two splits, obtaining a single dataset composed of 102246
examples (65734 train + 36512 test). Also, since many of the modeled pairs of
source and destination IPs present a reduced number of flows, we analyze feature
importance over varying lengths of the time series. This way, we consider four
different views of the data:

1. All pairs of source and destination IPs. This results in a dataset composed
of 102246 examples, out of which 51946 are malicious.

2. Pairs of source and destination IPs presenting at least 7 flows. This results
in 22093 examples, out of which 9093 are malicious

3. Pairs of source and destination IPs presenting at least 14 flows. This results
in 18849 examples, out of which 8336 are malicious

4. Pairs of source and destination IPs presenting at least 28 flows. This results
in 16414 examples, out of which 7529 are malicious.

Table 5 reports the sum of the importance of all human-engineered features,
as well as the sum of the importance of all automatically discovered features.
The results show that the discovered features are used by the classifier in all four



16

scenarios. The aggregated importance of learned features is 13.4% and 14.4% for
PCA-based and LSTM-based features when all examples are considered. These
low values are explained by the fact that most pairs of source/destination IPs
present a single flow, and so the classifier relies on the individual flow features.
However, the aggregated importance of discovered features increases as we con-
sider examples composed of 7, 14, and 28 of flows. In particular, the importance
of human and LSTM-based features is close to parity (50.6% vs. 49.4%) when
examples composed of 14 or more flows are considered. This case is highlighted
in Figure 4, in which we show the importance of the 23 original flow features
(blue) and the 10 features (red) as determined by a random forest classifier
learned with the LSTM model. The most important human-engineered features
are Bytes per second (1st overall), Packets per second (3rd overall), and Avg
inter-arrival time (5th overall). All LSTM features are used and considered im-
portant. Features LSTM-3, LSTM-4, and LSTM-8 are ranked 2nd, 4th, and 6th
in overall importance.

7 Related Work
There is a large research community focused on addressing InfoSec use cases
with machine learning [12]. The command and control detection problem, and
botnet detection in particular, has been widely studied (see [21,10] and therein).
Two key aspects differentiate this paper from existing work. First, most re-
search initiatives consider publicly available datasets that are either synthetic
or generated in controlled environments. Working with public datasets allows
researchers to replicate reported methodologies and to compare results fairly.
However, these datasets generally suffer from a lack of generality, realism, and
representativeness [5], and results obtained using them do not necessarily trans-
fer to real-world deployments. In this paper, we work with a dataset obtained
over two months from a real-world system. (Obtaining representative, real-world
datasets is a challenge in itself, and has been discussed in previous sections.)

Second, despite observations indicating that command and control commu-
nications exhibit distinctive network profiles when analyzed over long periods of
time [9], most existing approaches model individual flows [21]. In [5], the authors
suggest a potential improvement for modeling capabilities that includes multidi-
mensional snapshots of network traffic, e.g., combining flow level features with
pair level features (a pair of source and destination, no matter which port and
protocol used). This corresponds to the multivariate time-series classification
approaches introduced in this paper.

Classification methods for multivariate time series have been studied ex-
tensively. Xi et al. [26] compared several approaches, including hidden Markov
models [13], dynamic time warping decision trees [16], and a fully connected
feed-forward neural network [14]. Wang et al. [24] explore different methods for
projecting time series data into 2D images. The authors then explore the use
of convolutional networks to tackle several regression problems from the UCR
repository [7].

While deep learning-based solutions have been used for problems involving
computer vision and natural language processing, only a few examples exist in



17

the domain of information security. Staudemeyer et al. [20] explore the use of
recurrent neural networks with LSTMs to tackle the intrusion detection prob-
lem on the 1999 KDD Cup dataset [2]. A recent work by Tuor et al. [22] ex-
plores deep learning methods for anomaly-based intrusion detection. There are
also reported approaches that leverage LSTM-based models to differentiate the
algorithmically-generated domains used for command and control from legiti-
mate ones [25]. This paper is, to the best of our knowledge, the first paper to
introduce a generic framework for discovering features from any set of time-
stamped log data. Moreover, this is the first attempt to automatically discover
features that complement existing human-engineered features.

8 Conclusions

In this paper, we have presented multiple ways to represent log/relational data,
and 4 different deep learning models that can be applied to these representations.
We apply these methods to deliver models for command and control detection
on a large set of log files generated at enterprise network boundaries, in which
attacks have been reported. We show that we can detect command and control
over web traffic, achieving an area under the ROC curve of 0.943 and and 95
true positives out of the Top 100 ranked instances on the test data set. We also
demonstrate that the features learned by deep learning models can augment
simple aggregations generated by human-defined standard database operations.

References

1. Adversarial tactics, techniques & common knowledge, https://attack.mitre.org
2. KDD Cup 99, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
3. Malware capture facility project, http://mcfp.weebly.com/
4. VirusTotal, https://www.virustotal.com
5. Beigi, E.B., Jazi, H.H., Stakhanova, N., Ghorbani, A.A.: Towards effective feature

selection in machine learning-based botnet detection approaches. In: 2014 IEEE
Conference on Communications and Network Security. pp. 247–255 (2014)

6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
7. Chen, Y., Keogh, E., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The

UCR time series classification archive (2015)
8. Draper-Gil, G., Lashkari, A.H., Mamun, M.S.I., Ghorbani, A.A.: Characterization

of encrypted and VPN traffic using time-related features. In: Proceedings of the 2nd
International Conference on Information Systems Security and Privacy - Volume
1: ICISSP,. pp. 407–414 (2016)

9. Garćıa, S., Uhĺı̌r, V., Rehak, M.: Identifying and modeling botnet C&C behaviors.
In: Proceedings of the 1st International Workshop on Agents and CyberSecurity.
pp. 1:1–1:8. ACySE ’14, ACM, New York, NY, USA (2014)

10. Garcia, S., Zunino, A., Campo, M.: Survey on network-based botnet detection
methods. Security and Communication Networks 7(5), 878–903 (2014)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (Nov 1997)

https://attack.mitre.org
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://mcfp.weebly.com/
https://www.virustotal.com


18

12. Jiang, H., Nagra, J., Ahammad, P.: Sok: Applying machine learning in security-a
survey. arXiv preprint arXiv:1611.03186 (2016)

13. Kim, S., Smyth, P., Luther, S.: Modeling waveform shapes with random effects
segmental hidden markov models. In: Proceedings of the 20th Conference on Un-
certainty in Artificial Intelligence. pp. 309–316. UAI ’04, AUAI Press, Arlington,
Virginia, United States (2004)

14. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Information processing and tech-
nology. chap. Feature-based Classification of Time-series Data, pp. 49–61. Nova
Science Publishers, Inc., Commack, NY, USA (2001)

15. Plohmann, D., Yakdan, K., Klatt, M., Bader, J., Gerhards-Padilla, E.: A com-
prehensive measurement study of domain generating malware. In: 25th USENIX
Security Symposium (USENIX Security 16). pp. 263–278. USENIX Association,
Austin, TX (2016)

16. Rodŕıguez, J.J., Alonso, C.J.: Interval and dynamic time warping-based decision
trees. In: Proceedings of the 2004 ACM Symposium on Applied Computing. pp.
548–552. SAC ’04, ACM, New York, NY, USA (2004)

17. Sak, H., Senior, A.W., Beaufays, F.: Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. CoRR
abs/1402.1128 (2014)

18. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. comput-
ers & security 31(3), 357–374 (2012)

19. Sood, A., Enbody, R.: Targeted Cyber Attacks: Multi-staged Attacks Driven by
Exploits and Malware. Syngress Publishing, 1st edn. (2014)

20. Staudemeyer, R.C., Omlin, C.W.: Evaluating performance of long short-term mem-
ory recurrent neural networks on intrusion detection data. In: Proceedings of the
South African Institute for Computer Scientists and Information Technologists
Conference. pp. 218–224. SAICSIT ’13, ACM, New York, NY, USA (2013)

21. Stevanovic, M., Pedersen, J.M.: On the use of machine learning for identifying
botnet network traffic. Journal of Cyber Security and Mobility 4(3), 1–32 (2016)

22. Tuor, A., Kaplan, S., Hutchinson, B., Nichols, N., Robinson, S.: Deep learning
for unsupervised insider threat detection in structured cybersecurity data streams
(2017)

23. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: AI2: Training
a big data machine to defend. In: 2016 IEEE 2nd International Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE International Conference on High
Performance and Smart Computing (HPSC), and IEEE International Conference
on Intelligent Data and Security (IDS). pp. 49–54 (2016)

24. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation.
In: Proceedings of the 24th International Conference on Artificial Intelligence. pp.
3939–3945. IJCAI’15, AAAI Press (2015)

25. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain
generation algorithms with long short-term memory networks. arXiv preprint
arXiv:1611.00791 (2016)

26. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series
classification using numerosity reduction. In: Proceedings of the 23rd International
Conference on Machine Learning. pp. 1033–1040. ICML ’06, ACM, New York, NY,
USA (2006)

27. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D.: Bot-
net detection based on traffic behavior analysis and flow intervals. Computers &
Security 39, 2–16 (2013)


	Learning Representations for Log Data in Cybersecurity

