
Building Multiclass Nonlinear Classifiers with GPUs

Ignacio Arnaldo
CSAIL, MIT

Cambridge, MA 02139
iarnaldo@mit.edu

Kalyan Veeramachaneni
CSAIL, MIT

Cambridge, MA 02139
kalyan@csail.mit.edu

Una-May O’Reilly
CSAIL, MIT

Cambridge, MA 02139
unamay@csail.mit.edu

Abstract

The adoption of multiclass classification strategies that train independent binary
classifiers becomes challenging when the goal is to retrieve nonlinear models from
large datasets and the process requires several passes through the data. In such
scenario, the combined use of a search and score algorithm and GPUs allows to
obtain binary classifiers in a reduced time. We demonstrate our approach by train-
ing a ten class classifier over more than 400K exemplars following the exhaustive
Error Correcting Output Code strategy that decomposes into 511 binary problems.

1 Introduction

In this paper, our focus is to design a nonlinear function of the features f(X̄) such that the re-
sulting distributions of the function output when conditioned on the two classes p(f(X̄)|H0) and
p(f(X̄)|H1) are best separated. This approach is extremely beneficial when the variables are be-
lieved to have non-linear relationships when conditioned upon a class. Given a set of non-linear
operators, the optimization to obtain the best possible non-linear function for binary classification
requires a search and score methodology that performs several passes over the data.

An example search and score algorithm, known as Genetic Programming (GP) [6], relies on a pop-
ulation of models or individuals, generally represented with trees (see Figure 1). These trees are
iteratively improved by means of an evolutionary sampling process. The algorithm evaluates a pop-
ulation of models in each iteration, each requiring the evaluation of the non linear function on the
entire dataset. Since the goal is to find the model with highest discriminatory power between the two
classes, the area under the ROC curve is used as cost function to guide the search. This adds addi-
tional complexity because each point on the ROC curve is obtained by applying a moving decision
threshold to the non-linear functions output and evaluating the type I and type II errors.

Finally, most real world problems are multi-class classification problems that are often tackled by
training a series of binary classifiers and combining their predictions to classify new exemplars. With
increasing number of classes and data size, the training time of these search and score approaches
can overwhelm a CPU-based system.

This work focuses on the exploitation of Graphics Processing Units (GPUs) to build these non-linear
classifiers. To achieve this we first decompose a non-linear function into a sequence of functions and
evaluate them on the GPUs. We then obtain their areas under the ROC curves in a massively parallel
fashion. Our approach thus enables the search and score methodology to evaluate many models at
really fast speeds. Reduced time for building a single classifier allows us to build many classifiers
sequentially to solve multi-class classification problems following the strategies of One-vs-All and
Error Correcting Output Codes (ECOC).

1

function CUDAINT(Epostfix)
loadVariablesX(threadId)
while not end of expression do

read token from expression
if token is a variable then

push
else if token is operator then

pop right operand
if unary operator then

evaluate(right)
else if binary operator then

pop left operand
evaluate(left,right)

end if
push result

end if
end while
pop result
output[threadId] = result

end function

Figure 1: GP Tree, infix, and postfix forms (left) and pseudocode of the postfix interpreter (right)

2 Designing a non-linear classifiers with GPUs

Given a binary classification problem and a training data D, we first split the training data into DT

and Dλ. Then, we employ a search and score methodology Genetic Programming to iteratively
search for a nonlinear function f(X̄) such the distributions p(f(X̄)|H0) and p(f(X̄)|H1) are best
separated with respect to DT . The objective function for the Genetic programming is the maxi-
mization of the area under the ROC curve. The adopted approach presents a major challenge since it
requires p ∗ g passes over the data, where p is the number of models maintained during an iteration
and g represents the number of iterations. The elevated learning cost can be dramatically alleviated
with GPUs that enable many passes over large datasets in a reduced time. The computation required
to score a model is broken in two steps.

Step 1: Evaluation of non linear model with GPUs

In this step, non-linear model f(X̄) is evaluated for the n data points in DT resulting in y1...n.
We implement a GPU interpreter inspired on [4], [5], and [8] capable of evaluating any possible
arithmetic expression in postfix notation. As depicted in Figure 1, several steps are required to obtain
the postfix expression from a GP tree. We first traverse the tree in a depth-first in-order manner to
generate the respective infix expression. We then apply Dijkstra’s Shunting Yard algorithm [3] to
obtain the postfix notation. The interpreter will evaluate the expression and produce an output value
for each data point in the dataset. This task is computed via GPUs for datasets of size hundreds of
thousands or even millions of independent test cases.

In our GPU implementation, a CUDA thread is declared for each data point in the dataset. Thus
multiple CUDA threads will execute the interpreter function shown in Figure 1 simultaneously on
different data points, ensuring that all threads will follow the exact same execution path. Note
that conditional instructions such as if or while statements are pernicious for the performance of
CUDA programs only when they trigger a divergence in the execution of threads within a warp. In
such case, their execution is serialized. To benefit from coalesced memory accesses, we transpose
the input matrix before storing it in global memory in such way that exemplars are displayed in
columns while each line corresponds to an explanatory variable. This way, contiguous threads will
access adjacent memory positions, thus reducing the number of expensive global memory accesses.
At the end of this step we obtain the output of the model y1...n for all the n data points in DT .

Step 2: Computation of the area under the ROC curve

To compute the area under the ROC curve, we need to vary the threshold λ in the decision rule
L̂i =

{
1, if yi≥λ
0, if yi<λ

}
that determines whether a given output represents a class 0 or class 1 prediction.

For each threshold and data point, we obtain the predicted class label. We evaluate the two errors
and compute the model’s area under the ROC curve. We proceed as follows:

2

a: Retrieve the maximum ymax and minimum ymin values for the model outputs y1...n.
b: Normalize the outputs of the model with the obtained boundaries.
c: Vary the threshold λ ∈ [0; 1] and apply the decision rule as above.
d: Obtain the False Positive and True Positive rates for each value of λ
e: Compute the area under the ROC curve with the obtained rates.

a, b, c, d are computed in the GPU while e is computed in CPU. We accomplish very high speeds in
these computations by exploiting a a very high level of parallelism. In (a), a CUDA parallel reduction
is employed to obtain the maximum and minimum values. The GPU is also used to normalize the
output values and a third kernel computes the predictions of a model for a given threshold λ. Finally,
a parallel reduction is employed again in (e) to count the true and false positives. Once (e) is finished
the computation moves on to the next model and repeats Steps 1 and 2.

Step 3: Model and operating point selection During the search process, the best model of each
iteration is saved. Once the search is finished, we select from the best G models (one per iteration).
Then for each model we follow steps 1 and 2 and evaluate its area under the ROC curve for the the
model given the unseen data Dλ. We select the model with the highest area under the ROC curve.
This allows us to control for over fitting.

Given the model f(X̄) andDλ the last step consists in identifying the the threshold λ in the decision
rule L̂i =

{
1, if yi≥λ
0, if yi<λ

}
such that the Bayesian risk function given by

{
R = P (H0)CH1|H0

P (H1|H0) + P (H1)CH0|H1
P (H0|H1)

P (Hi|Hj) = |L̂=i|L=j|
|L=j|

(1)

is minimized, where CHi|Hj
represents the cost associated with declaring class i when the true class

is j, P (Hi) is the prior of class i and P (Hi|Hj) are the type I and type II errors. This is achieved by
performing a grid search over λ. This process is carried out post-hoc after the classifier is trained.

Step 4: Extending to Multi class problem For a multi class problem, we repeat the steps 1, 2, 3
sequentially each time changing the binary classification problem we are attempting to solve. Since
the training time for each non-linear classifier is brought down significantly this process is still
manageable on a desktop in a reasonable amount of time.

3 Experimental setup and results

The proposed approach is demonstrated with a modified version of the Million Song Dataset year
prediction challenge [1], generally described as a regression problem. We change this problem to
be one in which the goal is to predict the decade in which a given song was released. As shown in
Table 1, the resulting problem is a highly imbalanced ten class classification problem. The dataset is
divided into DT , Dλ, and Dtest accounting for 70%, 10%, and 20% of the data respectively. Note
that the producer effect issue has been taken into account to perform the split. To compute the areas
under the ROC curves, 11 points are obtained by moving the threshold λ in [0; 1] with a step of 0.1.
All the experiments are run on the same computer, equipped with a NVIDIA Geforce GTX 690 that
counts 1536 CUDA cores.

3.1 One-vs-All Strategy

We first adopt the one-vs-All approach, which decomposes into 10 problems in a one-versus-rest
fashion, to attack the decade prediction problem. The reduced number of binary problems allows us
to compare the execution time of an optimized C++ approach running on CPU and the proposed GPU

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Total
225 252 356 3104 11741 24748 41827 124808 299117 9386 515564

0.04% 0.05% 0.07% 0.60% 2.28% 4.80% 8.11% 24.21% 58.02% 1.82% 100%

Table 1: Class Distribution of the MSD decade prediction challenge

3

Tr time speedup
Opt. C++ 136m31s 1×

CUDA 6m 40s 20.46×

Table 2: Training time per binary
classifier and speedup obtained with
the GPU implementation

approach accuracy Tr time model eval. num classif.
DT 0.494 4m12s - 1

OVA 0.430 4m2s 2× 1010 10
ECOC 0.579 4m56s 2× 1010 511

ECOCf 0.598 4m56s 2× 1010 511

Table 3: Accuracy, average training time and model evalua-
tions per classifier, and number of trained classifiers

implementation introduced in the previous section. The seed employed to generate random numbers
is fixed to ensure the fairness of the comparison. Each of the GP instances (one per binary problem)
is run with a population of 1000 models and a generation limit of 100. Table 2 presents the training
times per binary classifier of the two implementations and the speedup obtained with the GPU
implementation. Note that the optimized CPU implementation already provides a 15× speedup [7]
as compared to the standard model evaluation generally adopted in Genetic Programming.

3.2 Exhaustive Error Correcting Output Code

We implement the exhaustive Error Correcting Output Code (ECOC) [2] strategy that decomposes
a k class classification problem into 2k−1 − 1 binary problems. The referred work proposes to
reduce the number of binary problems when the number of classes k is greater than seven. How-
ever, we demonstrate that our approach can tackle problems with an elevated number of classes by
adopting the exhaustive approach and training all the 511 binary classifiers. GP runs are stopped if
convergence is reached or if a model presents an area under the ROC curve greater than 0.95.

Table 3 shows the accuracy, the average training time and number of model evaluations per clas-
sifier, and the number of trained classifiers when approaching the decade prediction problem with
a Decision Tree (DT), One-vs-All (OVA), Error Correcting Output Codes (ECOC), and (ECOCf).
The latter is a refined version of the Error Correcting Output Codes strategy that filters the binary
predictors that present an area under the ROC curve less than 0.7 with respect toDλ. The number of
model evaluations is a factor of the exemplars in the training set (370K), the population size (1000),
and the average number of iterations iterations (55.7 for OVA and 57.4 for ECOC). As shown in
Figure 2, the number of model evaluations varies from a GP run to the other due to the stop criteria.

4 Conclusions

We have introduced a methodology that allows to retrieve nonlinear multiclass classifiers from large
datasets. The training procedure is decomposed into a series of binary classification problems, each
approached as the search of the nonlinear function f(X̄) that best separates the distributions of
the two classes p(f(X̄)|H0) and p(f(X̄)|H1). Genetic Programming is employed to perform the
search in the binary classifier space by targeting the maximization of the area under the ROC curve.
The comparison against an optimized CPU model evaluation has shown that the proposed GPU
implementation provides a 20.46× speedup, enabling our approach to iterate through the data in
a reduced time. In fact, a total of 1 × 1013 model evaluations are performed when adopting the
exhaustive ECOC strategy to train a classifier on a 10-class dataset composed of 370K exemplars.

Figure 2: Model evaluations per binary problem with OVA (left) and ECOC (right)

4

References

[1] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Information Retrieval
(ISMIR 2011), 2011.

[2] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-
correcting output codes. J. Artif. Int. Res., 2(1):263–286, January 1995.

[3] E. W. Dijkstra. Algol 60 translation. Supplement, Algol 60 Bulletin, 10, 1960.
[4] W. B. Langdon and Wolfgang Banzhaf. A SIMD interpreter for genetic programming on GPU

graphics cards. In Proceedings of the 11th European conference on Genetic programming,
EuroGP’08, pages 73–85, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] Denis Robilliard, Virginie Marion-Poty, and Cyril Fonlupt. Population parallel GP on the
G80 GPU. In Michael O’Neill, Leonardo Vanneschi, Steven Gustafson, AnnaIsabel Espar-
cia Alcázar, Ivanoe Falco, Antonio Cioppa, and Ernesto Tarantino, editors, Genetic Program-
ming, volume 4971 of Lecture Notes in Computer Science, pages 98–109. Springer Berlin Hei-
delberg, 2008.

[6] Michael Schmidt and Hod Lipson. Symbolic regression of implicit equations. In Rick Riolo,
Una-May O’Reilly, and Trent McConaghy, editors, Genetic Programming Theory and Practice
VII, Genetic and Evolutionary Computation, pages 73–85. Springer US, 2010.

[7] Dylan J Sherry. FlexGP 2.0: Multiple levels of parallelism in distributed machine learning via
Genetic Programming, 2013.

[8] G. Wilson and W. Banzhaf. Linear genetic programming GPGPU on Microsoft Xbox 360. In
Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelli-
gence). IEEE Congress on, pages 378–385, 2008.

5

	Introduction
	Designing a non-linear classifiers with GPUs
	Experimental setup and results
	One-vs-All Strategy
	Exhaustive Error Correcting Output Code

	Conclusions

