
1

Data Science Foundry for MOOCs
Sebastien Boyer, Ben U. Gelman, Benjamin Schreck, Kalyan Veeramachaneni

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA- 02139
sebboyer, kalyan@csail.mit.edu

bschreck@mit.edu, bgelman@gmu.edu

Abstract—In this paper, we present the concept of data science
foundry for data from Massive Open Online Courses. In the
foundry we present a series of software modules that transform
the data into different representations. Ultimately, each online
learner is represented using a set of variables that capture his/her
online behavior. These variables are captured longitudinally over
an interval. Using this representation we then build a predictive
analytics stack that is able to predict online learners behavior as
the course progresses in real time. To demonstrate the efficacy of
the foundry, we attempt to solve an important prediction problem
for Massive Open Online Courses (MOOCs): who is likely to
stopout? Across a multitude of courses, with our complex per-
student behavioral variables, we achieve a predictive accuracy
of 0.7 AUCROC and higher for a one-week-ahead prediction
problem. For a two-to-three-weeks-ahead prediction problem,
we are able to achieve 0.6 AUCROC. We validate, via transfer
learning, that these predictive models can be used in real time. We
also demonstrate that we can protect the models using privacy-
preserving mechanisms without losing any predictive accuracy.

I. INTRODUCTION

Massive Open Online Courses (MOOCs) generate large
amounts of very fine-grained data capturing student interac-
tions with the online platform. Students, or learners, interact
with the platforms in four different modes: they browse
the course material; they make submissions for assignments,
exams and lecture exercises; they interact and collaborate with
each other via forums and/or other collaborative platforms
(such as Google Hangout); and finally, they provide feedback
to the course developers, instructors, and researchers via
surveys. In some very special cases, they also participate in
peer-grading.

As is typical for an online, large-scale platform, the data
presented numerous challenges before we could even begin
to develop predictive models. Our first analysis, which was
limited to one course, implemented ad-hoc procedures for data
collection, curation and data transformation and representation
[13]. To analyze data at scale and for multiple courses, we took
a different approach, addressing the challenges systematically
and creating an end-to-end software for data science and
predictive analytics. In this paper, we present an end-to-end
predictive analytics platform, we call “data science foundry".
The foundry applies a series of transformations to the data
starting from the raw data, making the data amenable for

an analytics purpose after each transformation. Our specific
contributions through this paper are:
The data science foundry: Our system transforms data from

its raw form (log files) into a structured representation,
then from structured representation to a per learner lon-
gitudinal variable representation. Then it transforms the
data to make it ready to build predictive models and
derive insights. At each step of the process we store the
intermediary format thus allowing reuse. For example,
per-learner longitudinal data could be used for multiple
purposes. It could be used to train predictive models,
perform correlative analysis. The foundry’s source code
is open source1. This enables anyone with MOOC data
to follow the steps in this paper and produce predictive
models.

Design of curation and processing software: The first step
in the foundry is to transform the raw data into the data
schema we proposed. We created software that converts
the raw data to this schema, and made it available as open
source. We used this software to curate approximately
160 million log lines across multiple courses.

Per-learner longitudinal variables: Predictive models de-
pend on good set of variables. We gathered ideas for
variables via a crowd-sourcing experiment. As a result we
assembled a list of longitudinal variables and extracted
them on a per-learner basis. In total we extracted 18
variables on a weekly basis for 169,215 learners.

Predictive models for 6 different courses and insights:
The next step in the foundry transforms the per-learner
longitudinal data into features for a supervised machine
learning problem. To demonstrate, we attempted to solve
an important prediction problem: figuring out whether
a student is likely to leave a course based on the
click stream events generated by his or her interactions.
Prediction of this event allows instructors, researchers
and platform providers to design interventions that may
reduce the dropout rates. Across 6 courses we were able
to define 560 prediction problems and we trained models
for each of them. Our predictive models successfully
predict several weeks ahead.

Transfer learning: We are interested in using these predic-
tive models in real time. We examined whether models
learnt one course could be successfully applied to future

1The code is available at: https://github.com/MOOCdb/Copyright notice: 978-1-4673-8273-1/15/$31.00 c©2015 IEEE

2

Private release of models

Transfer Learning

Feature Engineering

Normalized standard data model

Tracking
Logs

Mongo
DB

Course
Production

JSON

User
CSVs

Predictive modeling

Analytics

CEx Fall 2012

X Y

β

CExSpring 2013

Features

Le
ar

ne
rs

Time

X Y

β

X Y

β

X Y

β

X Y

β

Fig. 1. A data science foundry for the data from Massive Open Online Courses. The data originally stored in multiple formats goes through a number of
transformations. At the first step we convert the data into a standardized data schema. We then generate a number of quantitative descriptors characterizing the
online learner’s behavior (a process called feature engineering). Over this representation of the learner we are able to define a number of prediction problems,
build and analyze models and present insights. Finally, to be able to use the models we employ transfer learning methods. Should the user want to release
the models we provide privacy preserving mechanisms for releasing the models.

offerings of a course, or to entirely separate courses. We
provide a transfer learning method to be able to adapt the
models for new courses.

Private release of models and analysis: Finally, we devel-
oped a privacy-preserving mechanism that could allow
users to release the models. Users can analyze the impact
of privacy-preserving mechanisms on predictive accuracy.
In our experiments we found that the models are still able
to perform well.

We proceed by describing the data produced by the edX
platform in Section II. We then present the challenges of
curating, conditioning and normalizing the data, and how
we addressed them. In Section III, we present the result
of the complex process of feature engineering to develop a
longitudinal representation of a learner. Given the longitudinal
representation of learners, we next present the prediction
problem we are interested in and the multiple versions of this
problem in Section IV. In section V we present different types
of models we built for the prediction problems. This section
also summarizes the results achieved via predictive models
for all 6 courses. We deduce which features mattered, and
provide insights into our prediction problems in Section VI.
In section VII we focus on how these predictive models could
be used in real settings. We compare multiple methodologies
that could enable transfer learning. Finally, in Section VIII, we
present the privacy mechanisms we employed that will allow
us to release these models for use, and analyze the affect of
these privacy mechanisms on the models’ predictive accuracy.

II. FROM RAW LOG DATA TO STUDENT TRAJECTORY

Figure 2 shows how a typical course on edX is organized.
The course is split into multiple weeks; each week is a unit,
and a unit consists of multiple sequences. When clicked on, a

sequence displays a number of browsable panels that feature
intertwined presentations of lecture videos and lecture exer-
cises. Each lecture video is split into many smaller segments
to enhance assimilation, as it is known that shorter videos
are better assimilated by learners [5]. Often, exercises are
intertwined with the videos, to give learners the opportunity to
assess how well they understood the material. Figure 2 shows
one such lecture exercise—in this case, panel number 3. The
exercise is broken down into two distinct problems, which are
identified internally as unique modules. At the bottom of the
page, there is a link to the discussion thread that corresponds
with this particular lecture exercise (in this case, the thread is
named S6E0).

While the learners browse this hierarchy of resources and
progress through the course structure, their data is recorded
as a sequence of log lines. Figure 3 shows one such log line,
describing when the learner navigates to the panel shown in
Figure 2. In the log line, the module is represented by a uri
(a unit usually not visible externally) and the page represents
the url, often recorded at the unit or sequence level.

During a typical course, it is not uncommon to have hun-
dreds of millions of these log lines detailing the learner’s every
activity on the platform. Our first challenge is to represent
and describe this activity succinctly. We represent it via a
learner trajectory, defined as a sequence of 5-tuples consisting
of < id, t, u, a,m >, where id is learner id, t is the timestamp,
u is a location of the learner’s activity that contains the
information regarding the hierarchy of the module as well as
the module with which the learner is engaged, a is the action
taken by the learner, if any, at this location in the course, and
m is any metadata that corresponds to this activity. As with
many online systems, while defining a learner trajectory is
conceptually straightforward, assembling the trajectory from

3

Fig. 2. A snapshot of a course structure as offered by edX. Hierarchy of different components is also shown.

the log data generated by this platform is not. Below, we
explain how we conditioned and curated this data before
building the trajectory.
Data conditioning: When working with this type of data,
a few issues commonly arise. There may be missing page
information or inadequate information about the hierarchy,
(that is, the page information may be at the panel level
or the sequence level rather than the modular level), or a
module may be missing entirely. To reconstruct a coherent
trajectory for the learner, we draw inferences using sequential
log lines from the same learner. We may infer the module
if it is missing, or add information to construct u such that
information is captured at the right depth level. Figure 4 shows
a few examples of such inferences. In the figure, the user
attempts the same problem multiple times. However, in the
second log line the page information is missing, and in the
third log line the module information is missing. By knitting
together these three consecutive log lines, we can infer the
persistent location of the user.
Data curation: Once we have conditioned the log lines for
the learner, our next step is to curate the data. A number of
processing steps allow us to remove the redundant entries gen-
erated whenever a learner attempts a problem (such attempts
are recorded in both browser and server events). Another step
tags each page in log line with the type of resource it is;
that is, a book, video, lecture problem, etc. This is achieved
by creating a dictionary of names used for different resources
as they appear in the page url, then comparing the page url
in the log line to this dictionary.
Data normalization: Once we have conditioned and curated
each log line carefully, we normalize the data into a set of
tables, as documented in the work [14]. There are three tables,
each of which stores information pertaining to one of three
categories: browsing, submissions and collaborative events the
learner engages in. We further refined a number of meta-
information fields to accommodate more nuanced aspects of

a digital learning ecosystem. These meta-information fields
can capture detailed items, including deadlines for problem
completion, whether or not the grading was done by peers,
and release dates for different content. We then extended the
schema so that data from a different platform, Coursera, could
be translated as well without any loss of information.

These steps of conditioning, curation and normalization al-
low us to replicate the analytics we perform on one course for
multiple courses across universities and platforms. Currently,
about 100 course offerings are being translated using this
software stack. We present results from a subsample of 6
courses that we have access to. Table I presents the details
of the 6 courses we analyzed.

III. REPRESENTING THE LEARNER BEHAVIOR

Our next step is to quantitatively characterize learners’
online behavior from web logs and click stream data. First,
we extract per-learner time sequences of click stream events.
These sequences are primitive, but if they are formulated
into variables that abstract learners’ behavior via feature
engineering, they could help to gauge learners’ intent, interest,
and motivation in the absence of verbalized or visual feedback.
Two types of variables exist. They are:
Variables that capture per learner behavior with respect to
a resource: For example, consider two variables such as:
total time spent of the video and the number of pauses while
watching the video. When these two variables are evaluated
for all the learners and analyzed they can reveal patterns; if
too many learners pause too many times, the video could be
fast and/or confusing.
Per-learner longitudinal variables: A longitudinal study in-
volves repeated observation of the same variables over time.
A variable is usually an aggregate or a statistic of some
observations defined for that time interval. In the context of the
MOOC, we can define the time interval to be a week, a day or
a time corresponding to the module/unit or divide the course

4

1 {

2 "username": "John",

3 "event_source": "browser",

4 "event_type": "problem_check"

5 "agent": "Mozilla /5.0 (Windows NT 6.1; rv :10.0.10) Gecko /20100101 Firefox /10.0.10"

6 "ip": "128.230.212.64"

7 "module_id": "i4x:// MITx/EECS_6_002x/problem/S6E0_Simple_Thevenin"

8 "page": "https ://6002x.mitx.mit.edu/courseware /6.002 _Spring_2012/Week_3/←↩
Circuits_with_Nonlinear_Elements/"

9 }

Fig. 3. An example log line as generated by user attempting to submit an answer to a problem.

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id": ""
"page":

.
"https://6002x.mitx.mit.edu/

↪→ courseware/6.002_Spring_2012/
↪→ Week_3/
↪→ Circuits_with_Nonlinear_Elements/".

}

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id":

.
"i4x://MITx/EECS_6_002x/problem/".

"page": "."
}

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id": "."
"page": "https://6002x.mitx.mit.edu/

↪→ courseware/6.002_Spring_2012/
↪→ Week_3/
↪→ Circuits_with_Nonlinear_Elements/"

}

.

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id": ""
"page":

.
"https://6002x.mitx.mit.edu/

↪→ courseware/6.002_Spring_2012/
↪→ Week_3/
↪→ Circuits_with_Nonlinear_Elements/".

}

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id":

.
"i4x://MITx/EECS_6_002x/problem/".

"page": "."
}

{
"username": ...
"event_source": ...
"event_type": "problem_check"
"agent": ...
"IP": ...
"module_id": "."
"page": "https://6002x.mitx.mit.edu/

↪→ courseware/6.002_Spring_2012/
↪→ Week_3/
↪→ Circuits_with_Nonlinear_Elements/"

}

.Fig. 4. An example of how we link multiple log lines and fill in the missing information to get the complete picture of the learner engagement.

2012 2013

Course 6002x 3091x 3091x 1473x 6002x 201x
Abreviation CEx12 CHx12 CHx13 GPx13 CEx13 ESx13

Start Date 09/05 10/09 02/05 02/12 3/3 15/04
Number of weeks 14 12 14 13 14 9

Number of students 51,394 24,493 12,276 39,759 29,050 12,243
Number of log lines 60M 40M 8M 34M 19M 6M

TABLE I
DETAILS ABOUT THE 6 MASSIVE OPEN ONLINE COURSES OFFERED VIA EDX PLATFORM. THE COURSES SPAN A PERIOD OF 2 YEARS SINCE THE

INCEPTION OF EDX AND HAVE A TOTAL OF 169,215 STUDENTS/LEARNERS. THE COURSES ALTOGETHER GENERATED A TOTAL OF 165 MILLION LOG
LINES.

into two periods - before and after midterm. Some example of
these variables are: How much time each student spent on the
course website during the past week, and The average length
of time before the deadline that a learner starts to work on
an assignment.

A learner can be quantitatively characterized in numerous
ways. To generate ideas and to prioritize which ones we should
extract first we sought the help of a crowd. The experiment and
its results are described in detail in [15]. The resulting feature
ideas that we incorporated in our software are presented in the
Table II.

The outcome at this stage is the transformation of the click
stream data in the schema to a temporal representation of the
learner characteristics. This is given by:

< lid, fid, tid, fV alue >, (1)

where lid is the id of the learner, fid is the id of the feature,
tid is the id of the time interval, and fV alue is the numeric
value of the feature.

IV. FORMULATING REAL TIME PREDICTIVE PROBLEMS

Given the temporal representation of the learner in eq. 1
one can formulate a number of prediction problems, examine
impact of a certain behavior (quantified by a variable) at
time tid on the future behaviors. Below we describe, how
we can construct numerous prediction problems from the
representation we detailed in the previous section. In general
we can define a prediction problem as

lid, fid, tm+n = Ψ (l∗, f∗, t1...m) , (2)

where Ψ is the predictive model, l∗ is all the learners in the
data, f∗ represents all the features and t1...m represents the
time slices till m. We are trying to predict the value of a
specific feature fid n steps ahead for the learner lid. To more
precisely define the formulation of the prediction problems, we
first define the temporal units for our data, and the concept of
lead and lag.
Weeks as time units: Temporal prediction of a future event
requires us to assemble explanatory variables along a time
axis. This axis is subdivided to express the time-varying
behavior of variables so they can be used for explanatory

5

TABLE II
LIST OF FEATURES PER STUDENT PER WEEK EXTRACTED

Feature
number

Definition

1 Whether the student has stopped out or not

2 Total time spent on all resources

3 Number of distinct problems attempted

4 Number of submissions 1

5 Number of distinct correct problems

6 Average number of submissions per problem (x4 / x5)

7 Ratio of total time spent to number of distinct correct problems (x2 / x8). This is the inverse of the percent of problems
correct

8 Ratio of number of problems attempted to number of distinct correct problems (x6 / x8)

9 Average time to solve problems

10 Duration of longest observed event

11 Total time spent on lectures

12 Difference in average number of submissions per problem when compared to previous week.

13 Difference in ratio of total time spent to number of distinct correct problems compared to previous week.

14 Difference in Ratio of number of problems attempted to number of distinct correct problems compared to previous week.

15 Difference in average time to solve problems compared to previous week.

16 Number of correct submissions

17 Percentage of the total submissions that were correct (x16 / x4)

18 Average time between a problem submission and problem due date over each submission that week

19 Standard deviation of duration of the events for the learner for that week

1 In our terminology, a submission corresponds to a problem attempt. In MOOCs, students could submit multiple times to a single problem. We therefore
differentiate between problems and submissions.

purposes. In the courses we consider, content was assigned and
collected on a weekly basis, where each week corresponded to
a module. Owing to the regular modular structure, we decided
to define time slices as weekly units. Time slices started the
first week in which course content was offered, and ended
after the final exam had closed (which is usely after the
fourteenth or fifteenth week). To precisely define the timing
of our predictions, we introduce two new definitions

Definition 1: The lead, n, represents how many weeks in
advance we will attempt to predict a feature value fid.

Definition 2: The lag, m, represents how many weeks of
historical variables will be used to build the predictive model.
For example, if we use a lead of 5 and a lag of 3, we would
use the first 3 weeks of data to predict 5 weeks ahead. Thus,
each training data point consists of a learner’s feature values
for weeks 1, 2 and 3 considered as features. The fid value for
week 8 becomes the outcome value or label we want to predict.
By this definition considering that we have k features, t time
slices we can formulate a total of k ·

∑t−1
m=1 t−m supervised

predictive problems.

A. Example prediction problem: Stopout prediction

When we surveyed a variety of studies (including ours), a
number of them posed the same prediction problem: could
we predict in advance whether a student would stopout of the
course? This knowledge would help stakeholders to design

strategies for retaining the students that are most likely to
stopout, and to present surveys in a timely fashion to under-
stand the reasons for the stopout.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2
·104

Week number since start

N
um

be
ro

fs
tu

de
nt

s
en

ga
ge

d

CEx12
CHx12
CEx13
CHx13
ESx13
GPx13

Fig. 5. Students who persist in a course as weeks pass by.

2The likelihood of a response to a survey reduces significantly after the
student has left the course.

6

In every course, there is a steady rate of learners that drop
out; indeed, only 7-8% of the learners remain by the end of
the course, as can be seen in Fig. 5. However, it is hard to
tell whether learners stopout because of how the course is
delivered, or because it was never their intention to finish
the course. Authors in [12] argue that one should analyze
stopout rates only for those students who have expressed
interest and strong motivation, traits assessed via surveys. In
the absence of such surveys, perhaps modeling stopout could
lead to some insights. Additionally, we hope that if we are
able to predict stopout risk before the actual stopout occurs,
customized interventions could be designed to help students.

Next, we had to pin down our definition of stopout. We con-
sidered defining it as the learner’s last interaction in the course,
regardless of the nature of this interaction[1]. Because this
definition gives the same weight to a passive interaction (such
as viewing a lecture, accessing an assignment, or viewing a
Wiki) as it does to a proactive interaction (such as submitting
a problem or taking an exam), instead, we used the definition
provided by [13]:

Definition 3: The stopout time stamp (week) is defined as
the last week a learner submitted an assignment or exercise.

Under this definition, 91 individual prediction problems
exist for a course that spans 14 weeks. For any given week i,
there are 14− i prediction problems. Each prediction problem
becomes an independent modeling problem which requires a
discriminative model. To build these discriminative models, we
use the common approach of "flattening out" the data—that
is, forming the covariates for the discriminative model by
assembling features from different learner-weeks, considered
as separate variables.

V. PREDICTIVE MODELING

In the foundry we enable the user to choose from a number
of predictive modeling methodologies.

Logistic Regression Logistic regression is a popular predic-
tive model due to its ability to model relationships non-linearly
and yet be easily interpretable. It calculates a weighted average
of a set of variables, submitted as covariates, as an input to
the logit function. The input to our logit function, z, takes the
following form:

z = β0 + β1 ∗ x1 + β2 ∗ x2 + ...βm ∗ xm (3)

Here, β1 to βm are the coefficients for the covariates values,
x1 to xm. β0 is a constant and the logit function, given by
y = 1

1+e−z . For a binary classification problem, the output
of the logit function is the estimated probability of a positive
training example. We train the model iteratively via maximum
likelihood estimation. A testing set comprised of untrained
covariates and labels evaluates the performance of the model
on the following test data, via calculation of area under the
ROC curve.

A. Results for stopout prediction problem

We built logistic regression based stopout predictive models
for all the courses presented in Table I. By accounting for

different lead and lag, we built a total of 560 models across
the courses.

Figure 6 presents the results for all 6 courses for varying
lead obtained with the built-in logistic regression algorithm
from the sklearn machine learning library. As expected, the
predictive accuracy decreases as the lead increases. However,
in most cases, we are able to maintain 0.6 or above AUC for
the prediction problem with the highest lead. In all the courses,
it is very easy to predict one week ahead 3. We get more than
0.7 AUC for a 2-3 weeks ahead prediction problem. The error
bars on the line plots represent the deviation for the same lead
when applied at different weeks during the course. The large
variance in some cases suggests that the prediction problem is
harder when the course is at a certain point. Anecdotally, we
have found that it is often easier to predict stopout after half
the term has passed.

VI. DERIVING INSIGHTS

In data driven discovery, one of the common questions one
asks is “What variables were important in predicting a certain
outcome?". To generate an answer for this we use random-
ized logistic regression. We detail the approach below and
also present ways to generate insights for multiple variables,
multiple courses, and multiple time points simultaneously.
Randomized Logistic Regression We use a randomized logistic
regression to assess the importance of features. Our model uses
18 features to model stopout. To assess the importance of the
features, a randomized logistic regression repeatedly models a
perturbed data set (subsample) with regularization, and works
as follows:
Step 1: Sample without replacement 75% of the training data

each time (the variables are normalized ahead of training).
Step 2: Train a logistic regression model on the sub-sampled

data, with a randomized regularization coefficient for
each variable. The randomized coefficient βj is sampled
from uniform distribution [λ, λα], where α ∈ (0, 1], and λ
is the regularization coefficient usually used in standard
regularized regression approaches. This randomization
applies different selection pressures for different vari-
ables.

Step 3: For every covariate, evaluate bjs = µ(wj , th), where µ
is a unit step function, wj is the coefficients for covariate
j, and th is the threshold we set to deem the feature
important. When this threshold is set at 0.25, this results
in a binary vector, which represents the selection of the
covariate. This binary vector is (lag × |features|) long,
where 1 at a location j implies feature i = j mod 18
was present in this model.

Step 4: Repeat Steps 1, 2 and 3 a total of 200 times.
Step 5: Estimate the importance of the covariate j by calcu-

lating the selection probabilities
∑

s b
j
s

200 .
Evaluating feature significances: Let c ∈ {1, ..., C} be the set
of courses, p ∈ {1, ..., P} be the set of prediction problems
for course c (formed by varying lead and lag compatible with
the length of c), w ∈ {1, ...,W} a week number (usually we
have that w = lag) and f ∈ {1, ..., F} be a feature index.

3This problem is currently being solved as part of KDD-cup.

7

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(GPx13)

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(ESx13)

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(CHx12)

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(CHx13)

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(CEx12)

1 2 3 4 5 6 7 8 9 10 11 12 13
0.5

0.6

0.7

0.8

0.9

1

Lead

A
re

a
un

de
rt

he
R

O
C

cu
rv

e

(CEx13)

Fig. 6. Area under the curve vs. the lead for all six courses under study. As lead increases the AUC decreases. The error bars show the variance in the AUC
when the same lead is applied at different weeks. Most courses have reasonably good AUC for one week ahead.

2a 3a 4a 5a 6a 7a 8a 9a 10
a

11
a

12
a

13
a

14
a

15
a

16
a

17
a

18
a

19
a 2b 3b 4b 5b 6b 7b 8b 9b 10

b
11

b
12

b
13

b
14

b
15

b
16

b
17

b
18

b
19

b 2c 3c 4c 5c 6c 7c 8c 9c 10
c

11
c

12
c

13
c

14
c

15
c

16
c

17
c

18
c

19
c

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

Fig. 7. Feature importance values for variables for 3 weeks when week 4 is targeted for prediction. Variables with suffix ‘a’ are week 1 features in order as
per the Table II, variables with suffix ‘b’ are week 2 features, and variables with suffix ‘c’ are week three features in the same order. The features of the last
week are most important in the prediction. We observe this in all the prediction problems, that is, most recent features matter more.

After running our randomized logistic regression algorithm
we are left with the following quantities for each course c ∈ C,
and each problem p, Ic,pi,w = importance of feature i of week
w. First we want to evaluate the relative importance of the
feature for each course. We therefore control for the influence
of time and prediction problems’ particularities by normalizing
the importance for each week.

Definition 4: For all courses c and all features f ∈ F , we
evaluate the feature significance of feature f for course c, via
the following quantity:

Îcf =
1

|P |
∑
p

1

|W |
∑
w

 Ic,pf,w∑
f ′∈F

Ic,pf ′,w

Next, we want to evaluate the influence of time on feature
importance. We first fix the week number K for which we
want to evaluate the importance, as we will only consider the
importance over the K last weeks of each prediction problem
(this way we don’t consider problems with lag < K). To
control for courses and problems’ particularities, we normalize
the importance for each course and problems over the K weeks
of interest.

Definition 5: For an integer K, a course c, a week index
z ∈ {1, ...,K}, c ∈ {1, ..., C} and a feature f ∈ {1, ..., F},
we evaluate the temporal feature significance of feature f

8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

(GPx)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

0.15

0.2

(ESx)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

0.15

0.2

(CHx12)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

0.15

0.2

(CHx13)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

0.15

0.2

0.25

(CEx12)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

5 · 10−2

0.1

0.15

(CEx13)

Fig. 8. Feature importances, per course and across all prediction problems. Most important feature is the pre-deadline submission time which measures how
much in advance does the learner starts to attempts the problems in the week.

on the zth week by calculating the following quantity:

I̊c,Kf,z =
1

|P |
∑
p

 Ic,pf,W−K+z∑
f ′∈[1,F],w′∈Ω(p,K)

Ic,pf ′,w′

where Ω(p,K) = [W −K + 1,W] is the set of K last weeks
of the prediction problem.

Finally, it is interesting to aggregate the two above-
mentioned quantities to derive across courses’ generalities.
We therefore introduce the notion of aggregate significance
to capture this information.

Definition 6: We evaluate aggregated feature significance
of feature f as the mean of the feature significance of f for all
courses. Similarly, we evaluate aggregated temporal feature
significance of feature f as the mean of the feature temporal
significance of f for all courses.

A. Results achieved using randomized logistic regression

For each of the 560 prediction problems across 6 courses
we built 200 logistic regression models resulting in an overall
112,000 models. We derived feature significance values using
the methods we presented above.

Figure 7 presents the feature importances achieved for a
lag=3 and lead=4 prediction problem across all courses. The
bars represent the aggregated temporal feature significance,
and the error bars represent the standard deviation across
courses. We summarize our findings with the following re-
marks:
• The temporal feature significance increases when we get

closer to the present. That is, a feature from far in the past
matters less than the same feature closer to the prediction
time of interest. These results can be seen in Figure 7.

• The feature significance differs a lot between features. In
figure 8 we show the feature importance for different
features across different courses. In almost all courses,
how long before the deadline the students start attempting
problems matters. Additionally, the total time spent on the
course matters, while the amount of time spent specifi-
cally on books, wikis, and lectures does not matter. In our
experience, a variety of stakeholders find these insights
very valuable, as they allow for customized design of
interventions.

VII. TOWARDS REAL TIME USE OF THE PREDICTIVE
MODELS

One of the foundational questions we tackled is, “are we
able to use this model to predict stopout in the following
courses?" To answer this question, we employ transfer learning
approaches. Below, we present two simple approaches, which
we will call offering S (for source offering) and target offering
T (for current ongoing courses).
A naive approach: When using samples from a previous
course to help classification on a new course, we first wonder
if the two tasks (classifying in the first course and classifying
in the second course) are similar enough that applying the
model learned on the first course to the second one will yield
satisfying results. To answer this question, we trained a logistic
regression model with an optimized ridge regression parameter
on S, and applied it to T. Figure 9 shows the AUCs achieved
by this approach for two different problems. They are for 1-
week-ahead (left) and 4-week-ahead (right) prediction problem
(note that when assessing the model on the same course we
used the same ridge factor as well as cross validation methods
so that the auc is a test auc as well).

9

CHx13 CEx13 CEx12 ESx13 GPx13 CHx12

CHx13 0.69 0.70 0.65 0.76 0.76 0.70

CEx13 0.69 0.73 0.74 0.77 0.78 0.75

CEx12 0.69 0.72 0.73 0.77 0.79 0.73

ESx13 0.68 0.71 0.73 0.78 0.79 0.74

GPx13 0.66 0.71 0.73 0.77 0.80 0.74

CHx12 0.67 0.72 0.73 0.77 0.79 0.77

0 0.2 0.4 0.6 0.8 1

CHx13 CEx13 CEx12 ESx13 GPx13 CHx12

CHx13 0.63 0.60 0.51 0.69 0.68 0.57

CEx13 0.59 0.66 0.62 0.73 0.72 0.70

CEx12 0.60 0.64 0.64 0.74 0.73 0.68

ESx13 0.59 0.64 0.62 0.75 0.73 0.68

GPx13 0.56 0.64 0.63 0.73 0.74 0.70

CHx12 0.55 0.65 0.64 0.75 0.73 0.73

0 0.2 0.4 0.6 0.8 1

Fig. 9. Performance of a naive transfer learning approach. A 6-by-6 matrix, where i, j shows the AUC achieved when course i’s model is used in course j.

After trying the simplest approach—transferring the model
directly from one course to another—we wondered if the
level of error could be decreased by using more sophisticated
approaches that would adapt the model to each new course.
This motivated the use of the approach below.
Transductive learning approach: To transfer the model from
source to target, we followed our belief that the covariates from
the two courses may overlap to a significant degree, and used
a sample correction bias [7]. This importance sampling, or IS,
method is equivalent to assuming that the covariates are drawn
from a common distribution, and that their difference comes
from selection bias during the sampling process (out of this
general common distribution). In order to correct this sample
selection bias, the idea is to give more weight to the learners in
the source course that are “close” to the learners in the target
course. In this way, the classification algorithm takes advan-
tage of learners in each course that are similar to each other,
and barely considers the significantly different ones. For each
target sample we predict : ŷTi = arg max

y∈{+1,−1}
l(xTi, y, w

∗).

The weights are estimated from the source data by optimizing:

where w∗ = arg min
w

∑
i=1:nS

βi l(xSi, ySi, w)

Note that each learner’s data is re-weighted using a parameter
βi in the log likelihood objective function. Finding the optimal
βi for such a re-weighting procedure would be straightforward
if we knew the two distributions from which the source and
the target learners’ data is drawn. To find these in practice, we
use a Gaussian kernel

k(x, z) = exp(−||x− z||
2

σ2
) ∀x, z ∈ S ∪ T

to measure the distance between data points. We then compute
an average distance to the target domain for each source
data point: κi = 1

nT

∑
j=1:nT

k(xSi, xTj) and use a quadratic

formulation found in [7] to evaluate the optimal coefficients
β∗i :

β∗ ∼ arg min
β

1

2
βTKβ − nS κTβs.t. βi ∈ [0, B] (4)

and ∣∣∣∣∣ ∑
i=1:nS

βi − nS

∣∣∣∣∣ ≤ nSε

where Kij = k(xSi, xSj). The objective function is the
formulation of the discrepancy between the two empirical
distributions’ means, the first constraint limits the scope of
this discrepancy, and the second constraint ensures that the
measure β(x)PT (x) is close to a probability distribution. In
our current experiments we note that importance sampling
based method did equally well as the naive method.

VIII. RELEASING THE MODELS

In the previous sections, we have shown that it is possible
to transfer the model from one course to another, either by
using a naive approach or by calibrating a source model for
the new data. Let us now consider that we want to release our
models so that users from multiple universities and different
platforms can utilize the model to make predictions.

Releasing the model (i.e. the coefficients learnt by the lo-
gistic regression algorithm) may raise privacy concerns. Even
though it is difficult to reconstruct personal data from only
the given coefficients, one can find very sensitive information
about a particular student by using both this model and data
from other students. This is particularly important when the
course (or the prediction problem) has only a few "close"
students, as someone could infer information about a subset
of students using only their data and this model.

To address the concern, we resort to differential privacy.
For logistic regression, a provable ε- differential privacy
mechanism that vastly reduces the risk of re-identification is
offered by [3]. We refer interested readers to [3], [4] for more
information about privacy-preserving mechanisms. To achieve
privacy, we incorporated ε as a measure of the “privacy," and
we changed the optimization problem of the logistic regression
by adding a “privacy term" to the optimization problem, so that
it becomes:

w∗ = arg min
1

n

∑
i=1:n

log(1 + e−yi.w
T .xi) +

1

2
λwT .w+

bT .w

n

where b is a random vector chosen as follows: We generate
d random numbers from a normal distribution centered on 0
and set them as the components of vector b. We then generate
a random number from a Γ distribution with parameter d
(the number of features) and 2

ε , and set it as the norm of
vector b (dividing all the components by their aggregate sum
and multiplying by this new positive number).The resulting
direction of the vector follows a uniform distribution over the

10

angles in the d dimensional space (to interested readers, we
suggest [3] for a mathematical proof).

2 · 10−24 · 10−26 · 10−28 · 10−2 0.1 0.12
0.67

0.68

0.69

0.7

0.71

0.72

ε

A
U

C

Fig. 10. Effect of ε on the predictive accuracy. Lower the ε higher the privacy
protection. We trained the model on CHx13 with different ε and tested
the model on the course CEx13. The performance of the model does not
deteriorate much. For a small values of ε = 0.005 (high privacy constraint)
the AUC goes down to 0.698 compared to the AUC of 0.703 when the model
is directly used without perturbation.

We solve the resulting optimization problems for different
values of the privacy parameter ε on the problem of predicting
week 4 using the first three weeks. The results are displayed
in Fig. 10.

IX. RELATED WORK

Prior to MOOCs, in [8], the authors proposed the combi-
nation of three classic algorithms to build a predictive model
for stopout within the first e-learning experiments. Focusing
on distance education, [10] uses students’ non-behavioral
data (age, gender, financial status) to predict dropout. For
behavioral data prior to MOOCs, prior academic performance
has proved to be the highest predictor of stopout [9]. Other
studies focused on time invariant variables such as attendance
at class orientation [16]. The features used in this work
are time-varying as in the work of [8]. These studies differ
significantly from ours due to the type of data now accessible
in the context of MOOCs.

In this context, the study of factors relating to persistence
has been of great interest due to high non-completion rates.
Using the first MOOC class on edX, [2] provided insightful
statistics on the nature of MOOC students and their behavior
on the platform. In [11], the authors studied the effect of
collaboration on the likelihood of dropout. They used a logistic
regression model and achieved 90% accuracy (retrospectively).
We designate this as a correlative (and not predictive) model
because completion of the final exam was used as an explana-
tory variable.

More recent work has focused on predictive analytics. The
closest work to ours can be found in [6] and [1], both of which
use binary variables in an attempt to predict dropout one week
in advance. Our work distinguishes itself by the broadness and
the flexibility of our framework, and particularly by how we
overcame the constraints on the choice of the week to predict
the features that could be used. Additionally, we showed that
the model could be both reused for new courses, and publicly
released without privacy concerns.

Note: We also want to mention the recent competition
launched by the SIGKDD: KDD-cup 2015, which deals with

predicting stopout in MOOCs. As we write this article, the
competition has about 200 competitors. We make three en-
couraging remarks. First, the popularity of this contest (as
well as the problem chosen) shows that there is significant
interest in predicting stopout. Second, the organizers of the
competition (with whom we haven’t been in contact) use the
data from an edX platform and use the same AUC metric as
we did. Third, as of the day we write this article, the “best"
AUC achieved by the competitors for the problem proposed
(a 10 days ahead prediction) is similar to the score reached
by our methods. The competitors get 0.89, while we achieve
between 0.90 and 0.85 for most of the courses. Finally, we
emphasize that our work focuses on a large flexible automatic
prediction framework for MOOCs, which differs greatly from
the aim of the competition’s organizers.

REFERENCES

[1] G. Balakrishnan and D. Coetzee. Predicting student retention in massive
open online courses using hidden markov models. In Technical Report
No. UCB/EECS-2013-109. EECS, University of California, Berkeley,
2013.

[2] L. Breslow, D. E. Pritchard, J. DeBoer, G. S. Stump, A. D. Ho, and
D. Seaton. Studying learning in the worldwide classroom: Research
into edxs’ first mooc. Research & Practice in Assessment, 8:13–25,
2013.

[3] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private
empirical risk minimization. The Journal of Machine Learning Research,
12:1069–1109, 2011.

[4] C. Dwork. Differential privacy. In Encyclopedia of Cryptography and
Security, pages 338–340. Springer, 2011.

[5] P. J. Guo, J. Kim, and R. Rubin. How video production affects student
engagement: An empirical study of mooc videos. In Proceedings of
the first ACM conference on Learning@ scale conference, pages 41–50.
ACM, 2014.

[6] S. Halawa, D. Greene, and J. Mitchell. Dropout prediction in moocs
using learner activity features. Proceedings of the European MOOC
Stakeholder Summit (EMOOCS 2014), Lausanne, Switzerland, 2014.

[7] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola.
Correcting sample selection bias by unlabeled data. In Advances in
neural information processing systems, pages 601–608, 2006.

[8] I. Lykourentzou, I. Giannoukos, V. Nikolopoulos, G. Mpardis, and
V. Loumos. Dropout prediction in e-learning courses through the
combination of machine learning techniques. Computers & Education,
53(3):950–965, 2009.

[9] G. Mendez, T. D. Buskirk, S. Lohr, and S. Haag. Factors associated with
persistence in science and engineering majors: An exploratory study
using classification trees and random forests. Journal of Engineering
Education, 97(1):57–70, 2008.

[10] A. Parker. A study of variables that predict dropout from distance
education. International journal of educational technology, 1(2):1–10,
1999.

[11] B. Poellhuber, M. Chomienne, and T. Karsenti. The effect of peer
collaboration and collaborative learning on self-efficacy and persistence
in a learner-paced continuous intake model. International Journal of
E-Learning & Distance Education, 22(3):41–62, 2008.

[12] J. Reich. Rebooting mooc research. Science, 347(6217):34–35, 2015.
[13] C. Taylor, K. Veeramachaneni, and U.-M. O’Reilly. Likely to stop?

predicting stopout in massive open online courses. arXiv preprint
arXiv:1408.3382, 2014.

[14] K. Veeramachaneni, S. Halawa, F. Dernoncourt, U.-M. O’Reilly, C. Tay-
lor, and C. Do. Moocdb: Developing standards and systems to support
mooc data science. arXiv preprint arXiv:1406.2015, 2014.

[15] K. Veeramachaneni, U.-M. O’Reilly, and C. Taylor. Towards feature
engineering at scale for data from massive open online courses. arXiv
preprint arXiv:1407.5238, 2014.

[16] A. Wojciechowski and L. B. Palmer. Individual student characteristics:
Can any be predictors of success in online classes? Online Journal of
Distance Learning Administration, 8(2), 2005.

