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Abstract

Understanding why students stopout will
help in understanding how students learn in
MOOCs. In this report, part of a 3 unit
compendium, we describe how we build ac-
curate predictive models of MOOC student
stopout. We document a scalable, stopout
prediction methodology, end to end, from
raw source data to model analysis. We at-
tempted to predict stopout for the Fall 2012
offering of 6.002x. This involved the meticu-
lous and crowd-sourced engineering of over 25
predictive features extracted for thousands of
students, the creation of temporal and non-
temporal data representations for use in pre-
dictive modeling, the derivation of over 10
thousand models with a variety of state-of-
the-art machine learning techniques and the
analysis of feature importance by examin-
ing over 70000 models. We found that stop
out prediction is a tractable problem. Our
models achieved an AUC (receiver operating
characteristic area-under-the-curve) as high
as 0.95 (and generally 0.88) when predicting
one week in advance. Even with more diffi-
cult prediction problems, such as predicting
stop out at the end of the course with only
one weeks’ data, the models attained AUCs
of 0.7.

1. Introduction

Massive Open Online Courses (MOOCs) leverage dig-
ital technologies to teach advanced topics at scale.
MOOC providers such as edX and Coursera boast
hundreds of classes developed by top-tier universities.
Renowned professors record their lectures, and when
needed, use interactive whiteboards to explain con-
cepts. Recordings are delivered all over the world via
web servers at no cost to the learner. Far from com-
promising the quality of course content, the internet
provides a flexible medium for educators to employ
new instructional tools. For example, videos enable
students to pause, rewind, review difficult concepts
and even adjust the speed. In addition, MOOCs al-
low the learner the flexibility to learn in his or her
own time frame. Only in the online medium are short
lectures logistically feasible through videos. MOOCs
are changing the face of education by providing an al-
ternative to the “one size fits all", learning concept
employed by hundreds of universities.

The specific layout of each MOOC varies, but most
follow a similar format. Content is sectioned into mod-
ules, usually using weeks as intervals. Most MOOCs
include online lectures (video segments), lecture ques-
tions, homework questions, labs, a forum, a Wiki, and
exams. Students advance through the material se-
quentially, access online resources, submit assignments
and participate in peer-to-peer interactions (like the
forum).

Not surprisingly, MOOCs have attracted the attention
of online learners all over the world. The platforms
boast impressive numbers of registrants and individ-
uals who complete online course work. For example,
MITx offered its first course 6.002x: Circuits and Elec-
tronics in the Fall of 2012. 6.002x had 154,763 regis-
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trants. Of those, 69,221 students looked at the first
problem set, and 26,349 earned at least one point.
9,318 students passed the midterm and 5,800 students
got a passing score on the final exam. Finally, after
completing 15 weeks of study, 7,157 registrants earned
the first certificate awarded by MITx, showing they
had successfully completed 6.002x. For perspective,
approximately 100 students take the same course each
year at MIT. It would have taken over 70 years of on-
campus education to grant the same number of 6.002x
certificates that were earned in a single year online.

While the completion rates are impressive when com-
pared to in-class capacity, they are still low relative to
the number of people who registered, completed cer-
tain parts of the course or spent a considerable amount
of time on the course. To illustrate, in the above sce-
nario approximately 17% attempted and got at least
one point on the first problem set. The percentage
of students who passed the midterm drops to just 6%,
and certificate earners dwindles at just under 5%. 94%
of registrants did not make it past the midterm.

How do we explain the 96% stopout1 rate from course
start to course finish? Analyzing completion rates
goes hand in hand with understanding student behav-
ior. One MOOC research camp advocates analyzing
student usage patterns– resources used, homework re-
sponses, forum and Wiki participation – to improve
the online learning experience thereby increasing com-
pletion rates. Other researchers question the feasibil-
ity of analyzing completion rates altogether because
the online student body is unpredictable. For exam-
ple, some students register online because it is free
and available with little or no intention of finishing.
Some students who leave may lack motivation, or could
leave due to personal reasons completely unrelated to
MOOCs. As a result, interpreting completion rates is
not a straightforward exercise. However, we believe
that if we are to fully understand how students learn
in MOOCs, we need to better understand why stu-
dents stopout. Building accurate predictive models is
the first step in this undertaking.

Why predict stopout? There are a number of rea-
sons to predict stopout.

Interventions: Stopout prediction in advance al-
lows us to design interventions that would increase
engagement, provide motivation and eventually
prevent stopout.

Identifying intentions: Certain special cases of
stopout prediction allow us to delineate the stu-
dent intentions in taking the MOOC. For exam-

1We use stopout as synonymous with dropout and we
refer to its opposite as persistence

ple, the cohort for whom we are able to predict
stopout accurately based on just their first week
behavior could imply that the method and man-
ner in which the course was designed or handled
had no effect on the learner’s decision to stopout.

Model analysis: Analysis of accurate statistical
models that have maximum stopout prediction ac-
curacy can yield insights as to what caused the
students to stopout. From this perspective one
can even examine the students for whom the pre-
dictions were wrong, that is, a very accurate and
trustworthy model predicted the student would
not stopout but the student did stopout. Here
the model error could be due to reasons that are
unrelated to the course itself.

In a compendium of papers, of which this is first of
three, we tackle the challenge of predicting student
persistence in MOOCs. Throughout the compendium
we focus on the aforementioned course, the Fall 2012
offering of 6.002x: Circuits and Electronics. We be-
lieve a three pronged approach which comprehensively
analyzes student interaction data, extracts from the
data sophisticated predictive indicators and leverages
state-of-the-art models will lead to successful predic-
tions. The compendium presents a comprehensive
treatment of predicting stopout which produces and
considers complex, multi-layered yet interpretive fea-
tures and fine tuned modeling.

We ask whether it is possible for machine learning al-
gorithms, with only a few weeks of data, to accurately
predict persistence. Is it possible to predict, given only
the first week of course data, who will complete the last
week of the course? How much history (or how many
weeks’ data) is necessary for accurate prediction one
or more week ahead?

1.1. Outline of the compendium

The compendium is organized into the following pa-
pers:

• In this paper, we describe the stopout predic-
tion problem, and present a number of discrim-
inatory models we built starting with Logistic re-
gression and moving to Support Vector Machines,
Deep Belief networks and decision trees. We also
present a summary of which features/variables
played a role in gaining accurate predictions.

• In “Towards Feature Engineering at Scale for Data
from Massive Open Online Courses" we present
how we approached the problem of constructing
interpretive features from a time series of click
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stream events. We present the list of features
we have extracted to create the predictive models
(Veeramachaneni et al., 2014b).

• In “Exploring Hidden Markov Models for model-
ing online learning behavior" we outline a tem-
poral modeling technique called Hidden Markov
models and present the results when these mod-
els are used to make predictions. We also present
a stacked model using both techniques (HMMs
and Logisitic regression) and present overview of
our findings (Taylor et al., 2014).

Compendium contributions : The most funda-
mental contribution of this compendium is the design,
development and demonstration of a stopout predic-
tion methodology, end to end, from raw source data
to model analysis. The methodology is painstakingly
meticulous about every detail of data preparation, fea-
ture engineering, model evaluation and outcome analy-
sis. Our goal with such thoroughness is to advance the
state of research into stopout from its current position
and document a methodology that is reproducible and
scalable. We will next generalize this methodology to
a number of additional edX and Coursera courses and
report the successes and limitations. In addition, the
methodology and software will shortly be released to
interested educational researchers.

1.2. Our contributions through this paper

This paper makes the following contributions:

• We successfully predict stopout for the Fall 2012
offering of 6.002x. The major findings of the pre-
dictive models are presented in 8.

• We extract 27 sophisticated, interpretive features
which combine student usage patterns from dif-
ferent data sources. This included leveraging the
collective brain-power of the crowd. These are
presented in 3.5.

• We utilize these features to create a series of tem-
poral and non-temporal feature-sets for use in pre-
dictive modeling.

• We create over 10,000 comprehensive, predictive
models using a variety of state-of-the-art tech-
niques.

• We demonstrate that with only a few weeks of
data, machine learning techniques can predict
persistence remarkably well. For example we were
able to achieve an area under the curve of the re-
ceiver operating characteristic of 0.71, given only

one week of data, while predicting student persis-
tence in the last week of the course. Given more
data, some of the models reached an AUC of 0.95.
We present these and other results in 5.2.

• We build and demonstrate a scalable, distributed,
modular and reusable framework to accomplish
these steps iteratively.

The rest of the paper is organized as follows. Section 2
presents the details of the data we use, its organiza-
tion, features/variables we extracted/operationalized
for modeling. Section 3 presents the definition of the
prediction problem and the different assumptions we
make in defining the problem. Section 4 presents the
predictive modeling technique - logistic regression and
the results we achieved for all 91 prediction problems.
Section 6 presents the details of how we employed
multiple predictive modeling techniques. Section 7
presents the related work both prior to MOOCs and
MOOCs. Section 8 presents the research findings rel-
evant to this paper. Section 9 presents our reflection
for the entire compendium.

2. Data organization into MOOCdb

As previously mentioned, we focused on the Fall 2012
offering of 6.002x: Circuits and Electronics. edX pro-
vided the following raw data from the 6.002x course:

• A dump of click-stream data from learner-browser
and edX-server tracking logs in JSON format. For
instance, every page visited by every learner was
stored as a server-side JSON (JavaScript Object
Notation) event.

• Forum posts, edits, comments and replies stored
in a MongoDB collection. Note that passive forum
data, such as how many views a thread received
was not stored here and had to be inferred from
the click-stream data.

• Wiki revisions stored in a MongoDB collection.
Again, passive views of the Wiki must be inferred
from the click-stream data.

• A dump of the MySQL production database con-
taining learner state information. For example,
the database contained his/her final answer to a
problem, along with its correctness. Note that the
history of his submissions must be inferred from
the click-stream data.

• An XML file of the course calendar which included
information like the release of content and the as-
signment deadlines.
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Figure 1. Multiple data sources received from edX with their corresponding formats

Figure 1 summarizes the raw data received. This data
included:

• 154,763 registered learners

• 17.8 million submission events

• 132.3 million navigational events 2

• ∼90,000 forum posts

To analyze this data at scale, as well as write reusable
analysis scripts, we first organized the data into a
schema designed to capture pertinent information.
The resulting database schema, MOOCdb, is designed
to capture MOOC data across platforms thereby
promoting collaboration among MOOC researchers.
MOOCdb utilizes a large series of scripts to pipe the
6.002x raw data into a standardized schema. More
about MOOCdb can be found in the MOOCdb Tech
report, but the details are outside the scope of this
compendium (Veeramachaneni et al., 2014a).

Through the labor intensive process of piping the raw
data into a schematized database, we were able to sig-
nificantly reduce the data size in terms of disk space.
The original ∼70GB of raw data was reduced to a
∼7GB MOOCdb through schema normalization. The
transformation was crucial in order to load the entire
database into RAM enabling prompt queries and fea-
ture extractions. Figure 2 shows a snapshot of the
original JSON transactional data transformed into a
normalized schema.

2We received more navigational events, but only 132.3
million were well formed enough to be reliably considered
for this compendium.

3. Prediction problem definition and
assumptions

We made several assumptions to more precisely define
the stopout prediction problem and interpret the data.
These assumptions include time-slice delineation and
defining persistence (stopout) as the event we attempt
to predict.

3.1. Time-slice delineation

Temporal prediction of a future event requires us to as-
semble explanatory variables along a time axis. This
axis is subdivided to express the time-varying behav-
ior of variables so they can be used for explanatory
purposes. In 6.002x, course content was assigned and
due on a weekly basis, where each week corresponded
to a module. Owing to the regular modular structure,
we decided to define time slices as weekly units. Time
slices started the first week in which course content
was offered, and ended in the fifteenth week, after the
final exam had closed.

3.2. Stopout definition

The next question we had to address was our defi-
nition of stopout. We considered defining it by the
learner’s last interaction in the course, regardless of the
nature of the interaction. This is the approach taken
by Balakrishnan in his stopout analysis (Balakrishnan
& Coetzee, 2013). However, Balakrishnan’s definition
yields noisy results because it gives equal weight to
a passive interaction (viewing a lecture, accessing an
assignment, viewing a Wiki etc) as it does to a pro-
active interaction (submitting a problem, midterm, as-
signment etc). A learner could stop submitting assign-
ments in the course after week 2, but continue to ac-
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Figure 2. Piping data into MOOCdb

Figure 3. Stopout week distribution

cess the course pages and not be considered stopped
out. Instead, we define the stopout point as the time
slice (week) a learner fails to submit any further as-
signments or exercise problems. To illustrate, if a
learner submits his/her last assignment in the third
module, he/she is considered to have stopped out at
week four. A submission (or attempt) is a submission
of any problem type (Homework, lab, exam etc.), as
defined in MOOCdb. This definition narrows the re-
search to learners who consistently participate in the
course by submitting assignments. Using this defini-
tion for stopout we extracted the week number when

each learner in the cohort stopped out.

Figure 3 shows the distribution of stopout week for
all 105,622 learners who ever accessed the course. Of
these, 52,683 learners stopped out on week one. These
learners never submitted an assignment, and are never
considered in the rest of our analysis. Another large
learner drop off point is in week 15, the last week of the
course. Many of these learners actually finished the
course, but did so by submitting their final exam in
week 14. This nuance presented itself because learners
had a range of time to start the final exam, and this
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range actually overlapped between weeks 14 and 15.
Due to the nature of the final exam time range, we
never attempt to predict week 15, and consider week
14 as the final week.

3.3. Lead and Lag

Lead represents how many weeks in advance to predict
stopout. We assign the stopout label (x1, 0 for stopout
or 1 for persisted) of the lead week as the predictive
problem label. Lag represents how many weeks of his-
torical variables will be used to classify. For example,
if we use a lead of 5 and a lag of 3, we would take the
first 3 weeks of data to predict 5 weeks ahead. Thus,
each training data point is a learner’s feature values
for weeks 1, 2 and 3 as features. The binary stopout
value for week 8 becomes the label. Figure 4 shows a
diagram of this scenario.

We are careful not to use learners’ stopped out week’s
features as input to our models. In other words, if a
learner has stopped out in week 1, 2 or 3, we do not
use this learner as a data point. Including stopped
out learner data makes the classification problem too
easy as the model will learn that a stopped out learner
never returns (by our stopout definition).

To illustrate the predictive model’s potential applica-
tion, we will use a realistic scenario. The model user,
likely an instructor or platform provider, could use the
data from week 1 to week i (current week) to make
predictions. The model will predict existing learner
stopout during weeks i + 1 to 14. For example, Fig-
ure 4 shows one such prediction problem. In this case
the user, currently at the end of week 3, is attempting
to predict stopout for the 8th week.

Multiple prediction problems Under this defini-
tion 91 individual prediction problems exist. For any
given week i there are 14−i number of prediction prob-
lems. Each prediction problem becomes an indepen-
dent modeling problem which requires a discrimina-
tive model. To build discriminative models we utilize
a common approach of flattening out the data, that is
forming the covariates for the discriminative model by
assembling the features from different learner-weeks as
separate variables. This process is shown in Figure 7.
The example uses data from weeks 1 and 2 (lag of 2)
and attempts to predict the stopout for week 13 (lead
of 11).

For all of the ensuing modeling and analysis, we
treated and reported on each of the cohort datasets
independently.

3.4. Partitioning learners into cohorts

Rather than treat all learners uniformly, we decided
to build predictive models for different types of learn-
ers. With this in mind we divided the learners into
cohorts as a rough surrogate variable for their com-
mitment to the course. We chose four cohorts based
on the learner’s collaborative activity throughout the
course. More specifically, we divided learners based on
whether or not they participated in the class forum or
helped edit the class Wiki pages. The four types of
learners are:
• passive collaborator- these learners never actively

participated in either the forum or the Wiki. They
are named passive because they passively viewed,
but did not contribute to, resources.

• wiki contributor- these learners actively partic-
ipated in the Wiki by generating Wiki content
through their edits, but never actively posted in
the forum.

• forum contributor- these learners actively posted
in the forum, but never actively participated in
the class Wiki.

• fully collaborative- these learners actively partici-
pated by generating Wiki content and by posting
in the forum

From the combined dataset of 52,939 participating
learners, we assigned each learner into one of the four
types. The chart 5 summarizes the sizes of the cohort
datasets.

3.5. Features per learner

We extracted 27 interpretive features on a per-learner
basis. These are the features we use to build a
model. We describe the process of feature engineering
at length in (Veeramachaneni et al., 2014b). In this
paper for the sake of brevity, we only list the features
and their brief descriptions in the two tables below.
For more details about how we came up with these
features and how specifically these features were op-
erationalized we refer the readers to (Veeramachaneni
et al., 2014b)

4. Logistic Regression

Logistic regression is a commonly used binary predic-
tive model. It calculates a weighted average of a set of
variables, submitted as covariates, as an input to the
logit function. Thus, the input to the logit function, z,
takes the following form:

z = β0 + β1 ∗ x1 + β2 ∗ x2 + ...βm ∗ xm (1)
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Table 1. List of self-proposed, self-extracted covariates

Name Definition

x1 stopout Whether the student has stopped out or not

*x2 total duration Total time spent on all resources

x3 number forum posts Number of forum posts

x4 number wiki edits Number of wiki edits

*x5 average length forum
post

Average length of forum posts

*x6 number distinct
problems submitted

Number of distinct problems attempted

*x7 number submissions Number of submissions 1

x8 number distinct
problems correct

Number of distinct correct problems

x9 average number
submissions

Average number of submissions per problem (x7 / x6)

x10 observed event duration
per correct problem

Ratio of total time spent to number of distinct correct problems (x2
/ x8). This is the inverse of the percent of problems correct

x11 submissions per correct
problem

Ratio of number of problems attempted to number of distinct
correct problems (x6 / x8)

x12 average time to solve
problem

Average time between first and last problem submissions for each
problem (average(max(submission.timestamp) -
min(submission.timestamp) for each problem in a week) )

*x13 observed event variance Variance of a student’s observed event timestamps

x14 number collaborations Total number of collaborations (x3 + x4)

x15 max observed event
duration

Duration of longest observed event

*x16 total lecture duration Total time spent on lecture resources

*x17 total book duration Total time spent on book resources

*x18 total wiki duration Total time spent on wiki resources

1 In our terminology, a submission corresponds to a problem attempt. In 6.002x, students could submit multiple times to
a single problem. We therefore differentiate between problems and submissions.
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Table 2. List of crowd-proposed, self-extracted covariates

Name Definition

x201 number forum responses Number of forum responses

*x202 average number of submissions
percentile

A student’s average number of submissions (feature 9) as
compared with other students that week as a percentile

*x203 average number of submissions
percent

A student’s average number of submissions (feature 9) as
a percent of the maximum average number of submissions
that week

*x204 pset grade Number of the week’s homework problems answered
correctly / number of that week’s homework problems

x205 pset grade over time Difference in grade between current pset grade and
average of student’s past pset grade

*x206 lab grade Number of the week’s lab problems answered correctly /
number of that week’s lab problems

x207 lab grade over time Difference in grade between current lab grade and average
of student’s past lab grade

x208 number submissions correct Number of correct submisions

x209 correct submissions percent Percentage of the total submissions that were correct (x208
/ x7)

*x210 average predeadline submission
time

Average time between a problem submission and problem
due date over each submission that week
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Figure 4. Diagram of the learners’ weeks data used in a lead 5, lag 3 prediction problem

Figure 5. Chart of the relative sizes of our cohorts

Here, β1 to βm are the coefficients for the feature val-
ues, x1 to xm. β0 is a constant. The logit function,
given by,

y =
1

1 + e−z
(2)

takes the shape as shown in figure 8. Note that the
function’s range is between 0 and 1, which is optimal
for probability. Also note that it tends to ‘smooth out’
at extreme input value, as the range is capped.

For a binary classification problem, such as ours, the
output of the logit function becomes the estimated
probability of a positive training example. These fea-

ture weights, or coefficients, are similar to the coeffi-
cients in linear regression. The difference is that the
output ranges between 0 and 1 due to the logit func-
tion, rather than an arbitrary range for linear regres-
sion.

4.1. Learning

The objective of training a logistic regression model is
to find a set of coefficients well suited to fit the data.
For the binary classification problem, as noted before,
training involves passing a set of covariates and a corre-
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Figure 6. The feature matrix, which captures each feature value for each week. Each student has such a matrix.

x1 x2	   xm	  
w1	  
w2	  

w13	  

w14	  

W
eeks	  	  

S	   x1	   x2	   xm	   x1	   x2	   xm	  

Week	  1	   Week	  2	  

L	  

Figure 7. Diagram of the flattening process. In this case two weeks of data is used to predict week 13. This prediction
problem corresponds to a lead of 11, and a lag of 2.

Figure 8. The logit (aka logistic or sigmoid) function. The
logit equation is y = 1

1+e−x . The range of the function is
between 0 and 1.

sponding binary label associated with the covariates.
After training a model, the predicted probability, or
the output of the logit function, should predict higher

probabilities for the positive ‘+1’ class examples in the
training data and a lower probability for the negative
‘0’ class examples.

There is no closed form solution to find the optimal
coefficients to best fit the training data. As a result,
training is usually done iteratively through a technique
called maximum likelihood estimation (Menard, 2002).
First, a random set of coefficients are chosen. At each
iteration, an algorithm such as Newton’s method is
used to find the gradient between what the coefficients
predict and what they should predict, and updates
the weights accordingly. The process repeats until the
change in the coefficients is sufficiently small. This is
called convergence. After running this iterative pro-
cess over all of the training examples, the coefficients
represent the final trained model.
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4.2. Inference and evaluation

With training in place, the next step is evaluating the
classifier’s performance. A testing set comprised of
untrained covariates and labels evaluates the perfor-
mance of the model on the test data following the steps
below:

Step 1: The logistic function learned and presented in
2 is applied to each data point and the estimated
probability of a positive label yi is produced for
each data point in test set.

Step 2: A decision rule is applied to determine the
class label for each probability estimate yi. The
decision rule is given by:

L̂i =

{
1, if yi ≥ λ

0, if yi < λ

}
(3)

Given the estimated labels for each data point
L̂i and the true labels Li we can calculate the
confusion matrix, true positives and false positives
and thus obtain an operating point on the ROC
curve.

Step 3: By varying the threshold λ in 3 the decision
rule above we can evaluate multiple points on the
ROC curve. We then evaluate the area under the
curve and report that as the performance of the
classifier on the test data.

Predictive accuracy heat map To present the
results for multiple prediction problems for different
weeks simultaneously, as discussed in Section 3.3, we
assemble a heat map of a lower right triangular matrix
as shown in Figure 9. The number on the x-axis is the
week for which predictions are made of that experi-
ment. The y-axis represents the lag , or the number
of weeks of data used to predict. The color represents
the area under the curve for the ROC that the model
achieved. Note that as the predicted week increases
for a given lag , it is harder to predict. Likewise, as
we increase the lag for a given prediction week, the
stopout value becomes easier to predict. This implies
that using more historical information enables a better
prediction.

4.3. Attractive properties of logistic regression

• It is relatively simple to understand.

• After a model is trained, it provides feature
weights, which are useful in assessing the predic-
tive power of features (this will be discussed fur-
ther in our treatment of the randomized logistic
regression model).

Figure 9. Example heatmap for a logistic regression prob-
lem. The heatmap shows how the ROC AUC varied as lag
changed as the target prediction week changed.

• It is fast to run. On a single i-7 core machine,
for example, running each of the 91 prediction
problems on all 4 cohorts took 25 hours.

5. Predicting stopout with logistic
regression

We applied logistic regression to student persistence
prediction. We used the 27 interpretive features we
described earlier in this paper to form the feature vec-
tors, and maintained the stopout value as the label.

5.1. Experimental setup

To perform logistic regression analysis, we executed
the ensuing steps for every lead, lag and cohort com-
bination 3:
1. Performed 10 fold cross validation on the training

set. As outlined in the evaluation chapter, this
involved training the model on 9 folds of the train
dataset and testing on the last fold.

2. Trained a logistic regression model on the entire
train dataset.

3. Applied the model to the test dataset by putting
each data point through the model then applying
the decision rule in 3 and following the steps in
4.2 to determine the AUC under the ROC.

4. Evaluating the model using mean cross validation
ROC AUC and test set ROC AUC.

3 We used the logistic regression implementation of an
open source machine learning library, called scikit-learn.
We chose this library because it is well known and tested,
fast (the core maximum likelihood estimation algorithm is
written in C), with an easy to use python interface. In
addition, the scikit-learn library includes an easy interface
for cross validation and feature normalization.
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Figure 10. Logistic regression results for the passive collaborator cohort.

5.2. Experimental Results

Figures 10 through 13 summarize the AUC of the re-
ceiver operating characteristic for all four cohorts over
each lead and lag combination. Overall, logistic re-
gression predicted dropout with very high accuracy.
Some experiments, such as a lag of 7, predicting week
8 in the fully collaborative cohort achieved accuracies
as high as 0.95, a noteworthy result(Figure 12). More-
over, the entire diagonal of the passive collaborator co-
hort’s heatmap (Figure 10) resulted in an AUC greater
than 0.88. This diagonal represents experiments with
a lead of one. Thus, we can surmise that the extracted
features are highly capable of predicting stopout, es-
pecially when the prediction week is fairly near the lag
week.

Across all experiments, the predictive models of the
passive collaborator cohort achieved the highest pre-
dictive accuracies. This is because passive collaborator
is by far the largest cohort, which resulted in high per-
forming, stable accuracy for all 91 experiments. Con-
versely, the wiki contributor cohort performed terribly
for many experiments. In fact, for some lag and pre-
dicted week combinations, the model could not even
compute an AUC because there were not enough ex-
amples to test on.

What follows is a deeper explanation of two interesting
prediction problems and their results.

Are there early signs of stopout? One interest-
ing prediction problem is trying to predict student per-
sistence into the last week of the course using a single
week of data. Practically speaking, this would enable
platform providers and instructors to predict which
students would finish the course by the end of the first
week. Potentially, this would allow instructors to in-
terpret the reason for student stopout as motivational
(such as just browsing) rather than course-specific rea-
sons (such as the content becoming too difficult), be-
cause the students have not been exposed to much
content yet. Furthermore, early-sign stopout predic-
tion could allow courses to target certain types of stu-
dents for some type of intervention or special content.
If our models are successful, the results would imply
that our extracted features are capturing a student’s
persistence far in advance. Remarkably across cohorts,
the generated models achieved an AUC of at least 0.64,
and reached as high as 0.78 in the case of the wiki con-
tributor cohort.

The wiki contributor AUC of 0.78, or even the passive
collaborator of 0.7 suggests it is possible to roughly
estimate which students will finish the course. Im-



Title Suppressed Due to Excessive Size

Figure 11. Logistic regression results for the forum contributor cohort.

plications include the ability to reach out to students
likely to stop the course before they become disen-
gaged, or giving a professor a rough indication of how
many students to expect each week. If these predic-
tions hold true for other courses, a prediction model
could be used to measure the success of course exper-
iments, such as changing course content.

In the case of the wiki contributor cohort, the model
performed well for most later predictive weeks given a
lag of one. This indicates two things. Firstly, wiki con-
tributor students show remarkably strong early signs
of persistence. Secondly, given more students, pre-
dictive models of the wiki contributor cohort would
likely perform well. Owing largely to the small pool
size of the wiki contributor cohort, model performance
suffered, especially as lag increased, because there
were not enough students to appropriately train on.
However, with a lead of one, the models used more
student’s data because we included all students who
started in the course.
The prediction spike after the midterm Lead-
ing up to the midterm (in week 8), making predictions
using a lag of i, where i is the current week, yields a
fairly consistent AUC. In other words, students who
will stopout after the midterm resemble their persis-
tent counterparts up until week 8. However, using lag

8 instead of 7, thereby including midterm data, pro-
duces an upward prediction spike in all four cohorts.

Perhaps the most striking spike example is in the most
consistent cohort, the passive collaborator students.
If the model attempts to predict using a only lag 7,
it realizes an AUC of 0.75. If the model expands to
include midterm week data from week 8 and attempts
to predict who will be in the course the next week, it
achieves an AUC of 0.91. This is a significant spike.
Similarly, the fully collaborative cohort increases AUC
significantly from 0.68 in week 7 to 0.81 in week 8.

With the addition of the midterm week data, the
model is equipped to make reasonably consistent pre-
dictions through the end of the course. In fact, for
the two cohorts of significant size, the region including
and beyond week 8 achieves the highest AUCs of the
entire course. This suggests that the midterm exam is
a significant milestone for stopout prediction. It fol-
lows that most students who complete the midterm
finish the course. For the two smaller cohorts, wiki
contributor and fully collaborative, the region beyond
week 8 realizes terrible predictive power because too
few students remain in the course to accurately train
on.
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Figure 12. Logistic regression results for the fully collaborative cohort.

Consider what a wiki is (students summarize and re-
frame their knowledge) and the high level of engage-
ment it reflects (more than forum). Therefore, other
technologies that have similar kind of high engagement
may have same influence on persistence.

Feature importance We utilized randomized lo-
gistic regression methodology to identify the relative
weighting of each of the feature. More details about
this approach are presented in (Veeramachaneni et al.,
2014b). Here we briefly present the results of that
experiment through Figure 14. In these four figures
higher bar represents higher importance of that fea-
ture in predicting stopout across all 91 experiments
for that cohort. We summarize the features we found
important in the findings section.

6. Multiple classifiers

After successfully modeling the data using logistic re-
gression and Randomized logistic regression, we pro-
ceeded to model the data using a number of classi-
fiers via a cloud based machine learning as service
framework called Delphi. Delphi is a first-ever shared
machine learning service developed by members of

ALFA group at CSAIL, MIT (Drevo, 2014) 4. It
is a multi-algorithm, multi-parameter self-optimizing
machine learning system that attempts to automat-
ically find and generate the optimal discriminative
model/classifier with optimal parameters. A hybrid
Bayesian and Multi-armed Bandit optimization sys-
tem searches through the high dimensional search
space of models and parameters. It works in a load
balanced fashion to quickly deliver results in the form
of ready-to-predict models, confusion matrices, cross
validation accuracy, training timings, and average pre-
diction times.

6.1. Experimental setup

In order to run our datasets through Delphi, we per-
formed the following:

1. Chose a few lead, lag combinations to run on Del-
phi. Since Delphi creates many models, we only
chose 3 datasets per cohort. We chose lead and lag
combinations which were difficult for logistic re-
gression to predict so we could see if Delphi would
perform better. We chose the following combina-
tions: lead of 13, lag of 1; lead of 3, lag of 6; lead

4http://delphi.csail.mit.edu/
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Figure 13. Logistic regression results for the wiki contributor cohort.

of 6, lag of 4.

2. Flattened each cohort’s train and test dataset to
generate files which could be passed to Delphi.
We flattened in the same manner as described in
logistic regression section.

3. Ran the 12 datasets through Delphi. This gave us
12 models which performed best on a mean cross
validation prediction accuracy metric.

4. Evaluated these models on the basis of test
dataset ROC AUC and cross validation ROC
AUC performance.

6.2. Delphi results

The models created by Delphi attained AUCs very
similar to those of our logistic regression and HMM
models (described in (Taylor et al., 2014). The best
algorithm chosen by Delphi varied depending on which
lead, lag and cohort combination was chosen. The al-
gorithms included stochastic gradient descent, k near-
est neighbors, logistic regression, support vector ma-
chines and random forests.

For the two larger cohorts, passive collaborator and
forum contributor, Delphi’s models used logistic re-
gression, stochastic gradient descent, support vector

machines and random forests. For each of the lead
and lag combinations, the models’ results were within
0.02 of our logisitic regression results. This indicated
that the predictive power of these cohorts was not due
to the type of model used. Rather, the strong predic-
tive accuracies achieved were due to the interpretive
features in the models. As noted in (Veeramacha-
neni et al., 2014b), varying the features used, such
as when using only the self-proposed, self-extracted
features rather than the self-proposed, self-extracted
features and crowd-proposed, self-extracted features,
significantly changed the results. These findings lead
us to conclude that focusing on better features pro-
vides more leverage in MOOC data science than does
fine-tuning models.

For the smaller wiki contributor and fully collaborative
cohorts, Delphi’s models provided significantly better
accuracy. For example, for the wiki contributor cohort,
all three lead and lag combinations’ models produce
AUCs greater than 0.85. The best classifiers used to
model these cohorts included k nearest neighbors and
stochastic gradient descent. This indicates that for
these cohorts, the type of model matters a great deal.
We conclude that this is due to the small size of the
cohorts. Some classifiers are able to more gracefully
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(a) passive collaborator cohort (b) forum contributor only

(c) fully collaborative (d) wiki contributor only

Figure 14. Relative importance of different features across all variants (different lead and lag) of stopout prediction
problem. The four plots give the feature importances as found for the four cohorts we described in this paper. Summary:
For the passive collaborator cohort, top 5 features that had the most predictive power across multiple stopout predictive
problems include average pre deadline submission time, submissions per correct problem, average number of submissions
in percent , correct submissions percent , pset grade over time. For the forum contributor cohort, top 5 features that
had the most predictive power across multiple stopout predictive problems include lab grade over time, average pre
deadline submission time, average length of forum post , lab grade, average number of submissions in percent . For the
fully collaborative cohort, top 5 features that had the most predictive power across multiple stopout predictive problems
include lab grade over time, lab grade, pset grade, pset grade over time, average pre deadline submission time. For the
wiki contributor cohort, top 5 features that had the most predictive power across multiple stopout predictive problems
include lab grade over time, lab grade, average pre deadline submission time, pset grade, average number of submissions
in percent . For more details about how these relative importances were calculated we refer the user to (Veeramachaneni
et al., 2014b).
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handle less data. This provides early suggestive evi-
dence that, when a student cohort is relatively small
(in relation to number of features), it is important to
investigate multiple models to identify the most accu-
rate one.

7. Related work and literature

Dropout prediction and analysis of reasons for dropout
have been of great interest to the educational research
community in a variety of contexts: e-learning, dis-
tance education and online courses offered by commu-
nity colleges. To understand and gain perspective on
what has been done so far, we surveyed a large cohort
of relevant literature. Tables 3 present a list of 25 re-
search studies we surveyed that were prior to MOOCs.
Table 4 presents the list of 8 concurrent studies that
correspond to MOOCs.

We use a set of five axes along to compare research
models. For any model, the axes are 1) intended pur-
pose: predictive vs. correlative, 2) whether behav-
ioral and/or non-behavioral attributes were employed,
3) use of longitudinal and/or time-invariant variables
and 4) use of trace data and/or survey data. A subset
of these axes are similar to those identified by (Lyk-
ourentzou et al., 2009).

Axis 1: Intended Purpose – Predictive vs.
correlative By categorizing a model as predictive,
we identify it being used prospectively to predict the
whether or not a student will dropout. Predictive
modeling is often the basis of interventions. It can be
used while a course is running. In correlative model-
ing, analysis is performed to correlate one or more vari-
ables with completion (or progress to some timepoint).
Retrospectively, the reasons for dropout are identified.
(Diaz, 2002; Tyler-Smith, 2006; Street, 2010) provide
an excellent summary of a number of correlative stud-
ies performed in this domain. Many studies build pre-
dictive models to not operationalize the model for ac-
tual prediction during a course but to gain insights into
which variables and what values of the variables are
predictive of dropout. We categorize such approaches
as correlative as well.

Within the predictive models category, in the litera-
ture, there is an abundance of modeling problems set
up to use a set of variables recorded over a single his-
torical interval, e.g first 3 weeks of the course, and to
predict an event at a single timepoint. For example,
using data or surveys collected from the first 4 mod-
ules of a course to forecast stopout after the midterm.
In some cases, however, when predictive models are
built for a number of time points in the course as in
(Lykourentzou et al., 2009) the model is not built to

predict ahead.

In contrast, we identify 91 different predictive model-
ing problems within a single MOOC. We take pains
to not include any variable that would arise at or af-
ter the time point of our predictions, i.e. beyond the
lag interval. We do this so we can understand the
impact of different timespans of historical information
on predicting at different time intervals forward. In
other words, our study is the first to the best of our
knowledge to systematically define multiple prediction
problems so predictions could be made during every
week of the course, each week to the end of the course.
(Lykourentzou et al., 2009) provide an excellent sum-
mary of studies that fall in predictive category.

Finally, we are concerned with the accuracy of predic-
tive model so that it could be used during the course
for intervention. As predictions can make two types of
errors: mispredict stopout or mispredict persistence,
our use of area under the receiver operating charac-
teristic curve (AUC) as a metric for measuring the
efficacy of our models rather than R2 metric is a tes-
tament to the effect. The metric emphasizes the im-
portance of both the errors and we aim at optimizing
this metric. To the best of our knowledge this metric
has not been used to evaluate the models. Addition-
ally, we provide a probability of stopout allowing the
user to choose a threshold to make prediction. This
allows the intervention designer to choose a trade-off
point on the receiver operating characteristic curve.

Axis 2: Behavioral and/or non-behavioral at-
tributes. This categorization identifies whether or
not variables that capture learning behavior of student
were used in modeling. Examples of a non-behavioral
attribute are a student’s age, sex or location, occupa-
tion, financial status (Parker, 1999; Willging & John-
son, 2009). Second kind of non-behavioral variables
are perceptual variables, such as those derived from
questionnaires, that need to be self reported. Our
models do not depend on perceptual variables, neither
do they depend on non-behavioral variables such as
age, gender and others. While such variables can play
a significant role in increasing accuracy of models (es-
pecially when predicting far ahead), in a MOOC they
may not be available. This is a powerful and signifi-
cant difference as this allows us to be able to transfer
the model without needing personally identifiable in-
formation.

Within the use of behavioral data, the most common
behavioral variables used are performance related ei-
ther prior to or during the course. For example, (Lyk-
ourentzou et al., 2009) use prior academic performance
(education level), other even use high school GPA, col-
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lege GPA, freshmen year GPA (Morris et al., 2005;
Mendez et al., 2008). Some studies compose variables
based on project grade and test grades during the
course (Lykourentzou et al., 2009). In almost all cases,
prior academic performance has been found to be the
highest predictor of the student persistence (Mendez
et al., 2008; Xenos et al., 2002; Allen & Robbins, 2008).

The second type of behavioral variables are based on
students’ interaction with the educational resources
(online or otherwise) rather than performance on a
test or a midterm, or prior academic performance, for
example how much time a student spent on lecture
videos or whether or not student attended the orien-
tation session. We tackle the challenge of identifying
variables that capture students’ interactions with the
online platform using actual trace analysis (log analy-
sis). We argue that such analysis can enable identifi-
cation of attributes of the course that could be asso-
ciated with stopout. For example, a difficult concept,
or a rather hard/confusing video.To the best of our
knowledge, the exploitation of very detailed trace ori-
ented variables like we derive appears to be not fully
exploited.

Axis 3: Time varying vs. time-invariant vari-
ables. A time varying variable captures a quantity at
different points in time. Many time varying variables
are summaries, such as average downloads per day, to-
tal minutes watching videos per module. Sometimes
they are first processed with scoring, e.g. see the en-
gagement scoring of (Poellhuber et al., 2008), or rank-
ing such as the decile of a participation level each week.
In contrast, a time invariant variable is constant over
time, e.g. ethnicity. The important choice between
these two types is whether dynamics are factored into
modeling. For example, we choose time varying vari-
ables as a means of capturing behavioral trends.

Most studies that we surveyed capture variables that
are summaries over time. Some of these variables by
definition are not time dependent such as attendance
at class orientation (Wojciechowski & Palmer, 2005)
and some are usually aggregated for a period in the
course (or entire course): number of emails to the in-
structor (Nistor & Neubauer, 2010). In our work we
operationalize variables at multiple time points in the
course. In this aspect, perhaps the closest approach
to ours is (Lykourentzou et al., 2009) where authors
form the time varying variables at different points of
the course - different sections of the course.

Axis 4: Trace or survey data use Surveys play
an important role in analyzing the factors related to
persistence.

Surveys allow perceptual data to be self reported and

collected via questionnaires. They permit very specific
theory, such as that underlying motivation or engage-
ment to be articulated and used as a reference point for
describing a student. They also permit the theory to
be tested. Very common among these are studies that
focus on collecting information about students “locus
of control" (Levy, 2007; Parker, 1999; Morris et al.,
2005), satisfaction (Park & Choi, 2009; Levy, 2007),
or perception of family support (Park & Choi, 2009),
among others.

Many studies struggle to collect this type of the data.
To overcome mistakes in manual data entry most sur-
veys are now provided electronically. However, in
many cases, not all students submit responses to sur-
veys and questionnaires. Survey data may ask a ques-
tion which a respondent fails unintentionally to answer
accurately (or worse, intentionally).

Trace data is typically logs and counters. It may in-
clude participation records. In MOOCs trace data is
available at a very fine grained level. Largely, it can
be considered as a set of silent, passive observations.
However, one needs to build interpretations for the
trace data that does not directly capture student states
such as attention, motivation, satisfaction.

Student persistence studies in MOOCs In the
context of MOOCs, study of factors relating to persis-
tence has been of great interest due to non-completion
rates. There have been at least 5 correlative studies
which we present in Table 4. These include (Poellhu-
ber et al., 2014; DeBoer et al., 2014; Breslow et al.,
2013), for more see Table 4. We categorize these stud-
ies as correlative as their goal primarily is to identify
variable influences on achievement or persistence.

Research studies performed on the same data as ours
in this paper show a steady progression in how vari-
ables are assembled and progress is made on this data.
(Breslow et al., 2013) identify the sources of data in
MOOCs and discuss the influences of different factors
on persistence and achievement. (DeBoer et al., 2013)
identifies the demographic and background informa-
tion about students that is related to performance.
(DeBoer et al., 2014) assembles 20 different variables
that capture aggregate student behavior for the en-
tire course. (DeBoer & Breslow, 2014) posits variables
on a per week basis and correlates with achievement,
thus forming a basis for longitudinal study. Our work,
takes a leap forward and forms complex longitudinal
variables on a per student - per week basis. Later, we
attribute the success of our predictive models to the
formation of the variables.

In (Poellhuber et al., 2014) a logistic regression model
with 90% accuracy was (retrospectively) developed for
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Table 3. Related Literature

Paper Sample size Category

(Parker, 1999) 100 correlative, behavioral , time-invariant

(Xenos et al., 2002) 1230 correlative, behavioral , time-invariant

(Kotsiantis et al., 2003) 354 predictive, behavioral , time-invariant

(Xenos, 2004) 800 correlative, behavioral , time-invariant

(Zhang et al., 2004) 57549 correlative non-behavioral , time-invariant

(Dupin-Bryant, 2004) 464 correlative, behavioral , time-invariant

(Wojciechowski & Palmer, 2005) 179 correlative, behavioral , time-invariant

(Morris et al., 2005) 211 predictive, behavioral , time-invariant

(Herzog, 2006) 23,475 predictive, behavioral , time-invariant

(Levy, 2007) 133 correlative, non-behavioral , time-invariant

(Holder, 2007) 259 correlative, non-behavioral , time-invariant

(Cocea & Weibelzahl, 2007) 11 predictive, behavioral , time-invariant

(Mendez et al., 2008) 2232 predictive, behavioral , time-invariant

(Hung & Zhang, 2008) 98 predictive, behavioral , time varying

(Moseley & Mead, 2008) 528 predictive, behavioral , time varying

(Juan et al., 2008) 50 correlative, behavioral , time varying

(Boon, 2008) 1050 correlative, behavioral , time-invariant

(Aragon & Johnson, 2008) 305 correlative, non-behavioral , time-invariant

(Allen & Robbins, 2008) 50,000 correlative, behavioral , time-invariant

(Lykourentzou et al., 2009)1 193 predictive, behavioral , time varying

(Willging & Johnson, 2009) 83 predictive, non-behavioral , time-invariant

(Park & Choi, 2009) 147 correlative, non-behavioral , time-invariant

(Nistor & Neubauer, 2010) 209 predictive, behavioral , time varying

1 This article contains a comprehensive overview similar to ours about a variety of studies conducted in dropout prediction
over a number of years in the e-learning/online learning context. We follow some of their findings about related work and
summarize in this table in addition to a few more studies we found.
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Table 4. Studies about student persistence in MOOCs

Paper Category

(DeBoer et al., 2013) correlative, non-behavioral , time-invariant

(Yang et al., 2013) correlative, behavioral , time varying

(Breslow et al., 2013) correlative, behavioral , time-invariant

(DeBoer et al., 2014) correlative, behavioral , time-invariant

(DeBoer & Breslow, 2014) correlative, behavioral , time varying

(Halawa et al., 2014) predictive, behavioral , time varying

(Ramesh et al., 2013) predictive, behavioral , time varying

(Balakrishnan & Coetzee, 2013) predictive, behavioral , time varying

a French language economics course delivered through
the Edulib initiative5 of HEC Montreal during the
spring 2012 semester. We designate this as a correla-
tive model because completion of the final exam was
used as an explanatory variable. Univariate models
were first constructed to provide information on vari-
able significance. The final logistical regression model
integrated significant variables and identified behav-
ioral engagement measures as strongly related to per-
sistence.

Three predictive studies closer to our study here are
(Halawa et al., 2014; Balakrishnan & Coetzee, 2013;
Ramesh et al., 2013; 2014). All three attempt to pre-
dict one week ahead (lead =1) 6. Among the papers
we surveyed (Balakrishnan & Coetzee, 2013; Ramesh
et al., 2013) use area under the curve (AUC) as a met-
ric for evaluating the predictive model.

There are three noteworthy accomplishments of
our study when compared to these studies above.
First, throughout our study we emphasize on vari-
able/feature engineering from the click stream data
and thus generate complex features that explain stu-
dent behavior longitudinally (Veeramachaneni et al.,
2014b). We attribute success of our models to these
variables (more then the models themselves) as we
achieve AUC in the range of 0.88-0.90 for one week
ahead for the passive collaborator cohort.

Second we focus on forming features/variables from
highly granular, frequently collected click stream data
which allows us to make predictions for a significantly

5http://edulib.hec.ca
6Except for (Ramesh et al., 2014) which attempts to

predict at three different time points in the course

large portion of students who do not participate in
forums, and in addition captures learners interaction
with resources and assignments. In the course data we
worked with, only 8301 out of 52,939 students partici-
pated on forums (approximately 15.6%, See Figure 5).
We argue that variables derived from learner interac-
tions on forums, as presented in (Ramesh et al., 2013;
2014; Yang et al., 2013) will only be available for a
subset of learners.

Third, we split the learner population into four differ-
ent cohorts and our methodology generates 91 different
prediction problems based on different leads and lags
and builds models for each of them. These result in
364 different prediction problems requiring modeling.

8. Summary of Research Findings

Our modeling and feature engineering efforts reveal
the following: 7:

• Stopout prediction is a tractable problem. Our
models achieved an AUC (receiver operating char-
acteristic area-under-the-curve) as high as 0.95
(and generally ∼0.88) when predicting one week
in advance. Even with more difficult prediction
problems, such as predicting student stopout at
the end of the course with only one week’s data,
our models attained AUCs of ∼0.7. This suggests
that early predictors of stopout exist.

• For almost every prediction week, our models find
7While we refer the reader to (Veeramachaneni et al.,

2014b) in the compendium for detailed descriptions of the
features we employed for prediction, numbered x1 . . . x18

and x201 . . . x208, we present a summary of our findings.
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only the most recent four weeks of data predictive.

• Taking the extra effort to extract complex
predictive features that require relative com-
parison or temporal trends, rather than em-
ploying more direct covariates of behavior, or
even trying multiple modeling techniques, is the
most important contributor to successful stopout
prediction. While we constructed many models
with a variety of techniques, we found consis-
tent accuracy arising across techniques which
was dependent on the features we used. Using
more informative features yielded superior accu-
racy that was consistent across modeling tech-
niques. Very seldom did the modeling technique
itself make a difference. A significant exception to
this is when the model only has a small number
of students (for example, approximately less than
400) to learn from. Some models perform notably
better than others on less data.

• A crowd familiar with MOOCs is capable of
proposing sophisticated features which are highly
predictive. The features brainstormed by our
crowd-sourcing efforts were actually more useful
than those we thought of independently. Addi-
tionally, the crowd is very willing to participate
in MOOC research. These observations suggest
the education-informed crowd is a realistic source
of modeling assistance and more efforts should be
made to engage it. See (Veeramachaneni et al.,
2014b) for more details.

• Overall, features which incorporate student prob-
lem submission engagement are the most predic-
tive of stopout. As our prediction problem defined
stopout using problem submissions, this result is
not particularly surprising. however submission
engagement is an arguably good definition.

• In general, complex, sophisticated features, such
the percentile of a student when compared to
other students (x202, Table 2), which relates stu-
dents to peers, and lab grade over time(x207, Ta-
ble 2), which has a temporal trend, are more pre-
dictive than simple features, such a count of sub-
missions (x7, Table 1).

• Features involving inter-student collaboration,
such as the class forum and Wiki, can be useful
in stopout prediction. It is likely that the quality
and content of a student’s questions or knowledge
are more important than strict collaboration fre-
quency. We found that, in particular, the length
of forum posts (x5, Table 1) is predictive, but the

number of posts (x3, Table 1) and number of fo-
rum responses (x201, Table 2) is not. The role of
the collaborative mechanism (i.e. Wiki or forum)
also appears to be distinctive since, in contrast
to forum post length, Wiki edits have almost no
predictive power.

9. General reflections for the entire
compendium

This extensive project has revealed a combinatorial
explosion of MOOC modeling choices. There are a
variety of algorithms which one could use, a variety
of ways to define a modeling problem and a number
of ways to organize data which is fed into modeling.
There are also numerous challenges in assembling fea-
tures while features themselves turn out to be of very
high importance. One has work systematically and be
thorough in feature definition and model exploration,
otherwise one will never know if one has derived the
best prediction capability from the data.

To successfully apply the power of data science and
machine learning to MOOC analytics, multiple aspects
of the process are critical:

Feature engineering One has to be meticulous
from the data up – any vague assumptions, quick
and dirty data conditioning or preparation will cre-
ate weak foundations for one’s modeling and analy-
ses. Many times painstaking manual labor is required
- such as manually matching up pset deadlines, etc.
We need to be ready to think creatively as you brain-
storm and extract features, and be flexible in the ways
we assemble them. For example, utilizing the crowd is
much richer than just our own expertise.

Machine learning/modeling at scale There are
many ways to represent the extracted features data-
with or without PCA, temporal and non-temporal, dis-
cretized and non discretized. Additionally there are a
number of modeling choices - discriminative, gener-
ative or mixed models which include many types of
classifiers. One has to consider a number of them to
enable insights at scale. The alternative results in a
much smaller scope with more limited results.

Our ability to build 10,000 models relied on us first
building the cloud scale platforms. This is especially
true as the machine learning process includes iterations
over data definitions, features and cohort definitions.
Only through a large scale computational framework
are these multiple iterations possible. Throughout our
analysis we ran on hundreds of nodes simultaneously,
using the DCAP and Delphi frameworks.
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Transfer learning prospects In order to have a
lasting impact on MOOC data science, we have to
think big! Investing resources only in investigating
stopout for one course limits the impacts of the results.
With this in mind, we set out to create a reusable, scal-
able methodology.

From the beginning of the research, we have envisioned
creating open source software. This would allow other
researchers to apply our methodology to their own
MOOC courses. That our software can be used by
any other MOOC research, is due to standardization
via the shared MOOCdb data schema. Our attention
to the scalability of our methods for large data sets
also supports wide applicability. The prospect of mul-
tiple studies and multi-course studies would be very
exciting and most welcome.
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