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Abstract
We examine the process of engineering fea-
tures for developing models that improve our
understanding of learners’ online behavior in
MOOCs. Because feature engineering relies
so heavily on human insight, we argue that
extra effort should be made to engage the
crowd for feature proposals and even their
operationalization. We show two approaches
where we have started to engage the crowd.
We also show how features can be evalu-
ated for their relevance in predictive accu-
racy. When we examined crowd-sourced fea-
tures in the context of predicting stopout, not
only were they nuanced, but they also consid-
ered more than one interaction mode between
the learner and platform and how the learner
was *relatively* performing. We were able to
identify different influential features for stop
out prediction that depended on whether a
learner was in 1 of 4 cohorts defined by their
level of engagement with the course discus-
sion forum or wiki. This report is part of
a compendium which considers different as-
pects of MOOC data science and stop out
prediction.

1. Introduction

Massive open online courses (MOOCs) have provided
a new way to reach enormous numbers of learners via
an online platform. Many courses proceed very sim-

ilarly to a campus course. However, they allow stu-
dents from anywhere in the world to register for a
course and earn a certificate upon successful comple-
tion. The specific layout of each MOOC varies, but
currently most follow a similar format. Content is sec-
tioned into modules, usually using weeks as intervals.
Most MOOCs include online lectures (video segments),
lecture questions, homework questions, labs, a forum,
a Wiki, and exams (midterm and final). Students 1

advance through the modules sequentially, access on-
line resources, submit assignments and participate in
peer-to-peer interactions (forums). While similar to
campus based courses there are significant differences
in the way material is offered and the way learners
interact with these courses. 2:

Interactive learning: MOOCs allow the insertion
of interactive exercises in between lecture videos
enabling student to apply the concepts they have
learnt. They allow instructors to use new technol-
ogy to engage learners in course material includ-
ing simulations, peer grading, discussion forums,
and games. They also allow instructors to inte-
grate experiences from outside classroom into the
curriculum.

Self paced and anytime learning: They allow
students to start their lectures anytime and en-
gage with the course anytime as and when their
schedule permits. Additionally, students can re-
play lecture videos, pause, play again and learn
at a pace that is most beneficial for them.

Instantaneous feedback on assessments: In
MOOCs students can be allowed multiple at-

1In this paper we use learner and student to mean the
same

2A TEDx lecture by Anant Agarwal explains these and
other key ideas that make MOOCs powerful
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Figure 1. An example log line stored in the backend as a learner pauses a video. The log line is stored in JavaScript
Object Notation (JSON).

timestamp url event
2013− 11− 1008 : 46 : 21 191 play_video
2013− 11− 1008 : 46 : 49 191 pause_video
2013− 11− 1008 : 47 : 24 191 play_video
2013− 11− 1008 : 51 : 25 191 pause_video
2013− 11− 1008 : 51 : 48 191 play_video
2013− 11− 1008 : 53 : 08 198 seq_goto
2013− 11− 1008 : 55 : 05 284 pause_video
2013− 11− 1008 : 56 : 05 284 play_video
2013− 11− 1009 : 40 : 50 284 pause_video
2013− 11− 1009 : 41 : 13 284 play_video
2013− 11− 1009 : 41 : 57 284 play_video
2013− 11− 1009 : 53 : 37 284 pause_video
2013− 11− 1010 : 15 : 53 284 problem_check
2013− 11− 1010 : 20 : 27 121 problem_check
2013− 11− 1010 : 22 : 27 123 problem_check
2013− 11− 1010 : 25 : 50 123 problem_graded

Figure 2. A snapshot of one learner’s timeline spanning ap-
proximately 2 hours of activity recorded as click stream
events. During this period the student plays and pauses
a video and attempts the problems available on the urls
121 and 123. urls are encoded with numbers and we store
all the meta information about the content of the url in a
different table.

tempts for a problem and can get instantaneous
feedback on every attempt. This feedback can
range from whether the answer was right or wrong
to a more sophisticated diagnosis.

While students advance in the course, every mouse
click they make on the course website is recorded, their
submissions are collected and their interactions on fo-
rums are recorded. An example of a clickstream event
and how it is recorded is presented in Figure 1. The
recorded data presents an opportunity for researchers
to analyze the data post-hoc, and answer questions
ranging from simple ones such as what was useful?
and what was not? to more complex research ques-

tions such as What was the reason behind a student
leaving the course?, What were the most common mis-
conceptions in the material?, How do students solve a
problem?.

As data scientists, to answer these questions one first
attempts to quantitatively characterize learners online
behavior from web logs and click stream data. The raw
data, recorded as shown in the Figure 1, after process-
ing, curation, and storing in a database 3, enables ex-
traction of per-learner sequences of click stream events
during a specified time period, shown in Figure 2.
These per learner sequence of the events only pro-
vide primitive signals that form bases for inferences
such as learner’s knowledge acquisition, attitude, at-
tention. However, they have potential to help us gauge
learners intent, interest and motivation in the absence
of verbalized or visual feedback from the learner. To
make such inferences we must form variables captur-
ing learner’s behavior; an endeavor we call feature en-
gineering. Among many different types of variables
and data representations, two kinds of variables are of
interest:

Variables that capture per learner behavior
with respect to a resource : For example, in the
above sequence of clickstream events two such vari-
ables are: total time spent of the video and the num-
ber of pauses while watching the video. When these
two variables are evaluated for all the learners and an-
alyzed they can uncover patterns; if too many learners
pause too many times, the video could be fast and/or
confusing.

Per-learner longitudinal variables: A longitudinal
study involves repeated observation of the same vari-
ables over time. A variable is usually an aggregate or
a statistic of some observations defined for that time

3These three steps are extremely complex and challeng-
ing but are not in the scope of this paper
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period. In the context of the MOOC, we can define
the time interval to be a week, a day or a time corre-
sponding to the module/unit or divide the course into
two periods - before and after midterm. An example
is time each student spent on the course website during
the week. A more complex variable is on an average,
the time before the deadline learner starts to work on
an assignment.

1.1. What is the challenge in feature
engineering?

Engineering features from this type of data: time series
of click stream events that record human interaction
with an online learning platform presents a very unique
set of challenges. As machine learning researchers (and
data scientists) our first inclination was to seek auto-
mated ways to extract features. Perhaps the methods
developed for problems in image understanding, and
both text and spoken language processing, such as deep
learning that enable further automation of what has
already been semi-automated would transfer? With
this type of data, however, we quickly realized that
feature engineering needs to be primarily driven by
humans because of the multiple roles they assume in
this endeavor. Below we explicate through examples
some of the roles humans play in engineering these
features. They:

Generate ideas based on their intuition: Com-
ing up with variables requires generation of ideas
based on intuition, and understanding of what
could be relevant for a study. As humans who
have been learners in some shape or form, we
self reflect to invent variables. For example,
when considering prediction of stopout/dropout,
we might each quite naturally suggest “If the stu-
dent starts to homework problems very close to
the deadline, he might be very likely to fall behind
and eventually drop out". Subsequently, we might
propose how to operationalize such a variable into
a quantitative value by measuring, “ Time differ-
ence between the dead line and the students first
attempt for the homework problem". While many
other aspects of feature engineering can be auto-
mated, this one cannot.

Bring their knowledge about the context as in-
structors: For MOOCs, designing variables re-
quires understanding of context and content of
the course for which the variables are sought. In
other words instructors or experts in the course
are able to propose what variables might be im-
portant to capture. For example, an instructor
might be aware of an important concept whose un-
derstanding is critical for continued success in the

course and may hypothesize that a variable that
captures whether the learner understood the con-
cept or not could help predict stopout/dropout.

Use their highly specialized knowledge of
learning science: Additionally researchers from
learning sciences are able to propose variables
grounded in theory that they can link together
via a multivariate distribution to explain latent
constructs such as motivation, intention, and self-
efficacy.

Operationalize the ideas: Due to the type of data
and a nature of variables, operationalizing these
ideas into variables require a number of steps, ad-
dition of details depending upon the context, as-
sumptions and heuristics. Take for example the
variable proposed above. First it requires us to
assemble the deadlines for all the problems in dif-
ferent weeks. Then we have to define as to what
constitutes as “start" time for student working
on the assignment. Since there is no mechanism
where students notify when they started to work
on the assignment, we have two options: the first
time they looked at the problem, or the time of
the first attempt for the problem or the time they
attempted but saved the answer instead of check-
ing for correctness. One can argue that the first
time student looks at the assignment might not
be the start time as it might correspond to the
learners simple browsing behavior, so one resorts
to the first attempt made by the learner towards
the problem.

Given that humans are NOT replaceable in this en-
deavor, we shifted our focus towards addressing a dif-
ferent goal: how to increase the number of people who
can participate in this endeavor?. Towards that, in
this paper, we initiate a new, broad and fundamental
approach towards human driven feature engineering.
In developing our new approach we focused on engi-
neering features that could be predictors for who is
likely to stopout?

We started with a very natural approach which was
to think up feature ideas ourselves and transfer them
into quantities in the data. We realized that this tact
is vulnerable to missing some features because there
are other interpretations of what was happening that
could be different from ours. This led us to construct
activities which involve collecting ideas for features
from others, i.e. the "crowd". This allowed us to ex-
pand the diversity of our set and eliminate our blind
spots. Subsequently we evaluated the value of fea-
tures in predicting stopout from a machine learning
perspective and discerned an important characteriza-
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tion of features. Our study on feature engineering for
stopout prediction problem helped us lay the founda-
tion for building next generation scalable feature en-
gineering platforms that are not only able to radically
increase the number of people who can participate in
this endeavor, but also enable a much smoother and
efficient participation.

1.2. Our contributions

Our contributions through this paper are:

• We develop the first set of longitudinal per-learner
variables that are able to successfully predict
stopout.

• For the first time, in this domain, we present the
results of soliciting ideas for variables from the
“crowd", an endeavor we conclude is going to be
necessary in this domain.

• We provide an in-depth account of the feature en-
gineering process we have used to develop features
that helped us predict stopout.4

• We present a systematic way to evaluate the con-
tribution of each feature towards the prediction
problem. We apply this methodology to the fea-
tures we assembled and demonstrate the impor-
tance of the contribution of the “crowd".

• We present the insights feature engineering can
yield about feature types, and how to make fea-
tures themselves as carefully nuanced and devel-
oped as the predictive models of behavior.

• We use our account to reflect on the feature engi-
neering that is going to be necessary if the com-
munity wants to fulfill the goal of understanding
online learning behavior from MOOC data. We
present the steps necessary to scale this process
and increase the pool of people contributing to
finding insights from the data.

We proceed in the following manner. In Section 2 we
start by describing the specific MOOC data we are
working with. In Section 3 we present 3 approaches
to initially proposing features. In Section 4 we elabo-
rate upon one of these: crowd sourcing. Next in Sec-
tion 5 we move to describing the operationalization of
the original feature ideas and proposals and list the
features we eventually engineered. We discuss, in Sec-
tion 6 the types of features and the challenges of oper-
ationalization. In Section 7, we describe how we eval-
uated the importance of these features with predictive
modeling based upon machine learning. In Section 8
we present other efforts of feature engineering in this

4Stopout is what we refer to for dropout

domain and compare with ours. We conclude in Sec-
tion 9 with a summary of our findings and our next
steps.

2. Data collected

We engineered features related to stopout from data
collected from a MOOC offered on the MITx plat-
form5. The course is 6.002x: Circuits and Electronics
taught in Fall of 2012. 6.002x had 154,763 registrants.
Of those, 69,221 students looked at the first problem
set, and 26,349 earned at least one point. 9,318 stu-
dents passed the midterm and 5,800 students got a
passing score on the final exam. Finally, after com-
pleting 15 weeks of study, 7,157 registrants earned the
first certificate awarded by MITx, showing they had
successfully completed 6.002x.

edX provided the following raw data:

• A dump of click-stream data from student-
browser and edX-server tracking logs in JSON
format. For instance, every page visited by ev-
ery student was stored as a server-side JSON
(JavaScript Object Notation) event.

• Forum posts, edits, comments and replies stored
in a MongoDB collection. Note that passive forum
activity, such as how many views a thread received
was not stored here and had to be inferred from
the click-stream data.

• Wiki revisions stored in a MongoDB collection.
Again, passive views of the Wiki must be inferred
from the click-stream data.

• A dump of the MySQL production database con-
taining student state information. For example,
the database contained his/her final answer to a
problem, along with its correctness. Note that the
history of his submissions must be inferred from
the click-stream data.

• An XML file describing the course calendar which
included information like the release of content
and the assignment deadlines.

This data included 17.8 million submission events,
132.3 million curated navigational events 6 and 90,000
forum posts.

To analyze this data at scale, as well as write reusable
feature engineering scripts, we first organized the data
into a schema designed to capture pertinent informa-
tion. The database schema, MOOCdb, is designed

5MITx became what is now known, circa 2013, as edX
6We received more navigational events, but only 132.3

million were well formed enough to be reliably considered
for this paper.
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Figure 3. Google form presented to the members of the class. The participants were asked to describe the feature they
propose, and why it would be useful in predicting stopout. A total of 30 features were proposed, by 12 members in the
class. 8 members proposed more than 1 feature.

to capture MOOC data across platforms thereby
promoting collaboration among MOOC researchers.
MOOCdb utilizes a series of scripts to pipe the raw
data into a standardized schema. It identifies 4 ba-
sic student-platform interaction modalities: observing,
submitting, collaborating and giving feedback. In ob-
serving mode students (somewhat passively) browse
the online platform, watch videos, read material such
as e-books or examine forum posts. In submitting
mode, students submit information to the platform
such as quiz responses, homework solutions, or other
assessments. In collaborating mode students post to
other students or instructors on forums, add material
to a wiki or chat on google hangout or other social
venues. In feedback mode students respond to sur-
veys. MOOCdb encompasses and organizes the de-
tailed data collected during these modalities. Its aim
is to be platform agnostic by means of providing a
common terminology between platforms. More about
MOOCdb can be found in the MOOCdb Tech report,
but the details about the schema itself are outside the
scope of this report (Veeramachaneni et al., 2013).

3. Our approaches for feature ideation

With the database, we then proceeded to form ideas
for the features that we can repeatedly calculate on
a per-student basis. We proceeded in three different

ways:

• Approach 1: We brainstormed feature ideas our-
selves. Next, we operationalized our own ideas by
writing feature extraction scripts. We call these
features self-proposed, self-extracted.

• Approach 2: We asked others for ideas of what
might be predictive of stopout. The people we
asked included students, teachers and other re-
searchers. We refer to this group collectively as
‘the crowd.’ We identified ideas that we had
not implemented yet, and constructed feature ex-
traction scripts ourselves. We call these crowd-
proposed, self-extracted. In the next section we
provide more details for this approach.

• Approach 3: Finally, we asked ‘the crowd’ to
brainstorm predictive features, and to send us
feature extraction scripts that we could run on
MOOCdb. We provided people with a mock
dataset with an identical data schema. Thus, in-
stead of providing actual student data, we empow-
ered the crowd to join in our data science efforts.
We call the resulting features crowd-proposed,
crowd-extracted.

Below we present the crowd sourcing experiment we
performed in approach 2.
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Describe feature Why is this feature useful?

pset grade over time:
Difference between grade on the
current pset and average grade
over previous psets. Significant
decreases may be likely to be
correlated with dropouts.

Anecdotally it appears that users who perform poorly on
the current week (especially after not performing poorly in
the preceding weeks) will subsequently give up. They may
also, with low probability, post on the forum explaining
their issue with the task at hand.

average pre deadline
submission time: average time
between problem submission time
and problem due date.

people who get things done early are probably not under
time pressure that would make them drop out.

proportion of time spent
during weekends): Fraction of
observed resource time spent on
each day of the week (7 variables
for Mon-Sun that add up to 1).
Just for previous week, and
averaged over all weeks so far.

Heavy weekend users might be more likely to drop out,
because they don’t have spare weekday time to devote to
the course.

Table 1. Three examples of features proposed by the students and instructors in the MIT class.

4. Approach 2: Crowd sourcing

To generate ideas for features, we sought opinions from
a class at MIT. We presented the data model (what
was being collected), explained what we meant by a
feature and asked members of the class (professors and
students) to posit features for each student that could
predict a student’s stopout. We collected the input
via a google form presented in Figure 3. In this form
we asked the users to describe the feature and describe
why they think the feature will be useful in predicting
stopout?. We did not present our features to the class.

Outcomes: Out of the 30 features that the class pro-
posed, 7 were in common with ours. Out of the re-
maining 23 features, we extracted 10 features. These
features are listed in Table 3 and are listed with num-
bers starting from 200.

The features proposed by the students and instructors
in this class were intuitive, based on experience and
self identification as once/or currently being a student.
Participants also gave detailed reason as to why the
feature is useful. We present three examples in Table 1.

5. Operationalizing features
ideas/proposals

After curating the data and carefully gathering the
proposals for features, we started operationalizing
these hypothesized to be predictive of stopout. We

split the course into 15 time slices/weeks. Thus,
for each defined feature, we assigned each student a
feature-value each week. For example, each student
has a value for the feature, number of forum posts, for
each of the 15 weeks. For each week, we also assign a
value for stopout. The value is 0 if the student has al-
ready stopped out by not submitting any more assign-
ments, or it is 1 if the student will submit assignments
in the future.

5.1. Self-proposed, self-extracted features

Table 2 summarizes the features we completely devel-
oped ourselves. Each feature is calculated on a per stu-
dent, per week basis. For features with *, additional
details are necessary because how they are operational-
ized is ambiguous and we made several decisions while
operationalizing them.

• x2, x16, x17, x18: These features are based on
observed event duration. The edX server logs
did not explicitly provide this, so we need to in-
fer the duration based on the timestamps of the
start of observed events. We assume that a stu-
dent observed an event until he observed a dif-
ferent event (a new timestamp). This is a sim-
ilar approach used by industry web-profile met-
rics. For example, if Student A had three ob-
served events with timestamps, T1, T2 and T3,
the duration of the first event would be T2 - T1,
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Table 2. List of self-proposed, self-extracted covariates

Name Definition

x1 stopout Whether the student has stopped out or not

*x2 total duration Total time spent on all resources

x3 number forum posts Number of forum posts

x4 number wiki edits Number of wiki edits

*x5 average length forum
post

Average length of forum posts

*x6 number distinct
problems submitted

Number of distinct problems attempted

*x7 number submissions Number of submissions 1

x8 number distinct
problems correct

Number of distinct correct problems

x9 average number
submissions

Average number of submissions per problem (x7 / x6)

x10 observed event duration
per correct problem

Ratio of total time spent to number of distinct correct problems (x2
/ x8). This is the inverse of the percent of problems correct

x11 submissions per correct
problem

Ratio of number of problems attempted to number of distinct
correct problems (x6 / x8)

x12 average time to solve
problem

Average time between first and last problem submissions for each
problem (average(max(submission.timestamp) -
min(submission.timestamp) for each problem in a week) )

*x13 observed event variance Variance of a student’s observed event timestamps

x14 number collaborations Total number of collaborations (x3 + x4)

x15 max observed event
duration

Duration of longest observed event

*x16 total lecture duration Total time spent on lecture resources

*x17 total book duration Total time spent on book resources

*x18 total wiki duration Total time spent on wiki resources

1 In our terminology, a submission corresponds to a problem attempt. In 6.002x, students could submit multiple times to
a single problem. We therefore differentiate between problems and submissions.
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the duration of the second is T3 - T2. Some-
times, the spacing between observed events is
very large, presumably because the user stopped
interacting with the website. This is handled
by setting the last observed event’s duration to
a MAX_DURATION. Hence if T3 − T2 > 60,
the duration is set to MAX_DURATION. In our
case, we set MAX_DURATION to be 60 minutes,
because our data included durations of up to ∼ 60
minutes , Additionally, the duration of the third
event is MAX_DURATION, since there is no T4.

• x5: A forum post’s length is the number of char-
acters in the forum post (i.e. the length of the
string). We used MySQL’s length function.

• x6, x7: With problem submissions, week number
is ambiguous. Students may submit a problem at
any time (assuming the problem is released), re-
gardless of when the problem is due. In other
words, even if a problem corresponds to week
number 3, a student could submit that problem
in week 5. For these features, we counted a sub-
mission in week w1 if the submission’s timestamp
is in w1, regardless of whether or not the prob-
lem is part of w1’s assigned content. We chose to
do this because the feature is meant to capture a
student’s weekly activity.

• x13: For this feature, we tried to measure the
consistency of a student’s observed event patterns
relative to the time of day (i.e., a student who al-
ways works on the course at 7:00 a.m. would have
small variance for that week). To capture event
variance, for each day, we counted the number
of seconds after midnight of the observed event
timestamp. We created a distribution of all of
the number of seconds for each student each week.
Then, we calculated the variance of the distribu-
tion (each student, week pair has it’s own distri-
bution). This variance becomes the feature. Note:
student’s participate from around the world, but
the timestamp is in UTC time. However, because
variance is valued over absolute value, the actual
time is irrelevant.

5.2. Crowd-proposed, self-extracted features

Table 3 summarizes the features the crowd hypothe-
sized, but we extracted. Each feature is calculated on
a per student, per week basis. A * indicates that a
disambiguating explanation follows underneath.

• x202, x203: For each week, we create a distribution
of all of the values for every student of feature

x9. Then, we compare a student’s x9 value to the
distribution for that week. x202 is the percentile
over that distribution, and x203 is the percent as
compared to the max of the distribution.

• x204, x206: As mentioned earlier, with regard to
submissions, there is an ambiguity: whether a
submission correspond to the week in which it
was submitted, or the week in which the prob-
lem’s module was. These features are meant to
capture the grade on the module. Therefore, they
are computed based on the week’s homework as-
signment and lab assignment, rather than on the
submission timestamp. The number of problems
the student answered correctly out of the total
number of homework or lab problems correspond-
ing to that week constitute features x204 and x206.

• x210: For each submission during the week, the
time difference between the submission timestamp
and the due date of the problem is calculated.
x210 is the average of all of these differences.

5.3. Crowd-proposed, crowd extracted features

In an attempt to crowdsource feature extraction, we
asked SQL-fluent MIT students and researchers to
both hypothesize new features and submit scripts
which would extract them. We are still in the pro-
cess of collecting feature scripts from this effort at the
time of writing.

6. Types of features and challenges

Our 28 features are more sophisticated because of the
variety of sources used in their proposition, such as
the leveraging crowd-sourced brainstorming to capture
creative behavioral features. Many involve complexi-
ties beyond a simple count per week. Such complexi-
ties include:

Use of higher level statistics We use, for exam-
ple, the variance of the times of day that a student
accesses course material each week (x13) and the
percentile of a student’s average number of sub-
missions (x202). (x202) also is a relative standing
of the student amongst his peers.

Curation requiring human cross-referencing:
Some features required manual curation in order
to arrive at a descriptive metric. For example,
x204, a student’s pset grade, necessitated man-
ual curation of problem and assignment deadlines
from the course content.

Referencing multiple data sources and
MOOCdb modes: Some features required
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Table 3. List of crowd-proposed, self-extracted covariates

Name Definition

x201 number forum responses Number of forum responses

*x202 average number of submissions
percentile

A student’s average number of submissions (feature 9) as
compared with other students that week as a percentile

*x203 average number of submissions
percent

A student’s average number of submissions (feature 9) as
a percent of the maximum average number of submissions
that week

*x204 pset grade Number of the week’s homework problems answered
correctly / number of that week’s homework problems

x205 pset grade over time Difference in grade between current pset grade and
average of student’s past pset grade

*x206 lab grade Number of the week’s lab problems answered correctly /
number of that week’s lab problems

x207 lab grade over time Difference in grade between current lab grade and average
of student’s past lab grade

x208 number submissions correct Number of correct submisions

x209 correct submissions percent Percentage of the total submissions that were correct (x208
/ x7)

*x210 average predeadline submission
time

Average time between a problem submission and problem
due date over each submission that week
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linking information from multiple sources (such
as x204, the pset grade). This included getting
deadlines for the problems from the XML file, all
submissions from the server logs, and the prob-
lem’s correctness from the production MySQL
dump.

Computationally expensive processing: Be-
cause the features are defined on a per-student
per-week basis, we must extract events on a per-
student basis for every week and then extract in-
formation for each student for that week. With
millions of events in the database and hundreds
of thousands of students this processing is com-
putationally expensive.

Integration of human intuition and context:
Some features express subtle human intuition
about motivational context. For example, x10
represents the amount of time a student spends
on the course (x2) per correct problem (x8). This
feature captures the less tangible gratification a
student experiences based on time spent.

These observations have prompted us to discern 3 fea-
ture categories; we explain them by the way of exam-
ples:

Simple: These features require a simple count or
creation of an aggregate for every student on a per
week basis. The count or aggregate is usually over
an already existing field or a count of a certain
type of events. Examples include: total time spent
on the course, number of problem attempts made
during this week, and amount of time spent on the
videos (or a certain video).

Complex: These features require extraction of rela-
tional linking of data from two or more modes of
student interaction. This implies more complex
processing (and pre processing to link the data).
They may require curation and some additional
manual processing. Examples of these features
include: number of times the student goes to fo-
rums while attempting problems, or on an average
how close to the deadline does the student start
attempting problems, and observed event duration
per correct problem.

Derived: These features combine one or more sim-
ple or complex features to form a new feature.
Usually a mathematical function, like ratio, trend,
or percentile is used in the composition. An in-
structor or student familiar with the course brings
some domain expertise to propose such a feature.

Essentially human intuition plays a key role. Ex-
amples of these type of features include: ratio of
number of distinct problems correct to the total
time spent on the course during that week, the dif-
ference in pset grade of the current week and the
average pset grade over past weeks and a learner’s
number of submission events in percentile (com-
pared against his peers).

7. Evaluating our features

To evaluate our features in terms of how well they col-
lectively explain stopout, we use them in a supervised
learning scenario we next describe.

7.1. Supervised learning problem: stopout
prediction

Our goal is to use our features to predict stopout. We
consider a student to have stopped out if s/he stops
attempting the problems in the course. In this predic-
tion problem, based on students behavior up until a
time point (using the historical data up until that time
point, a.k.a lag), we predict whether or not a student
will stopout by a certain time in future separated by a
time interval from the current time point (called lead).
Thus lead represents how many weeks in advance we
attempt to predict stopout. For example, if we use a
lead of 5 and a lag of 3, we would take the first 3 weeks
of data to predict 5 weeks ahead, that is predict for the
8th week. Thus, each training data sample consists of
repeated measurements of student’s feature values for
weeks 1, 2 and 3 as covariates. The binary stopout
value for week 8 becomes the label. Figure 4 shows a
diagram of this scenario.

We are careful not to use students’ stopped out week’s
features as input to our models. In other words, if a
student has stopped out in week 1, 2 or 3, we do not
use this student as a data point. Including stopped
out student data makes the classification problem too
easy as the model will learn that a stopped out student
never returns (by our stopout definition).

Since there were 14 weeks in the course, we have a total
of 91 unique prediction problems by varying lead and
lag . We consider the above example as one prediction
problem.

Randomized Logistic Regression We use random-
ized logistic regression to assess the importance of fea-
tures. Our model uses 27 features to model stopout.
In order to best fit a training set, a logistic regression
model optimizes weights for each feature. To assess
the importance of the features randomized logistic re-
gression repeatedly models a perturbed data set (sub-
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Figure 4. Diagram of the students’ weeks data used in a lead 5, lag 3 prediction problem

sample) with regularization, and works as follows:

Step 1: Sample without replacement 75% of the train-
ing data each time (the variables are normalized
ahead of training).

Step 2: Train a logistic regression model on the sub-
sampled data, with randomized regularization co-
efficient for each variable. The randomized co-
efficient βj is sampled from uniform distribution
[λ, λα ], where α ∈ (0, 1] and λ is the regularization
coefficient usually used in standard regularized re-
gression approaches. This randomization places
different selection pressure for different variables.

Step 3: For every covariate evaluate bjs = µ(wj , th)
where µ is a unit step function and wj is the coef-
ficients for covariate i and th is the threshold we
set to deem the feature important. This is set at
0.25. Thus this results in a binary vector, that
represents the selection of the covariate. This bi-
nary vector is (lag × |features|) long where 1 at
a location j implies feature i = j mod 27 was
present in this model.

Step 4: Repeat Steps 1, 2 and 3 a total of 200 times.

Step 5: Estimate the importance of the covariate j
by calculating the selection probabilities

∑
s b

j
s

200 .

7.2. Experimental setup and results

We divided our learners into four cohorts. These are
passive collaborator, wiki contributor, forum contribu-
tor and fully collaborative. Learners who did not post
in forums (but may have visited forums) and did not

edit wiki pages were categorized as passive collabora-
tor. Learners who participated in forums but not wiki
were categorized as forum contributor, and who edited
wiki but did not participate in forums were categorized
as wiki contributor and learners who participated in
both were categorized as fully collaborative. We ran
randomized logistic regression for every lead , lag and
cohort combination. Thus we have run 91×4 random-
ized logistic regression experiments (an experiment is
described above). In each experiment 200 logistic re-
gression models are formed, thus adding up to a to-
tal of approximately 72,000 logistic regression models.
For each experiment, randomized logistic regression re-
sulted in a vector of covariates selection probabilities.
Each of these probabilities ranged from 0 to 1. 7

Randomized logistic regression analysis gave us fas-
cinating covariate selection probability vectors for all
91 experiments and all cohorts. For each experiment
the randomized logistic regression gives us these selec-
tion probability vectors for all the covariates which are
learner features for different weeks. In order to gain a
more quantitative grasp of which features matter for
different prediction problem, we aggregate these prob-
abilities.

Week invariant feature importance To calculate
the importance of a feature for each cohort we follow
the two steps:

(1) We first evaluate its importance in an experiment
by summing its selection probability across dif-
ferent weeks. We then divide this sum with the

7We used the scikit-learn Randomized Logistic Regres-
sion implementation.
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lag for that experiment. This is a heuristic which
gives the feature’s importance in that particular
experiment. We illustrate this procedure for eval-
uating feature 1’s importance in an experiment
where the lag=3 in Figure 5.

(2) We then calculate the feature’s importance in each
of the 91 experiments. We then average the num-
bers to get the week-invariant feature importance
weight.

Figures 6 to 9 summarize these normalized average
feature importance weights for different cohorts.

The first thing that struck us as we looked at these
plots was the difference in feature weights between
the self-proposed features and the crowd-proposed fea-
tures. In all four cohorts, the majority of the weight
lies in the crowd-proposed features 5.2 (x201 through
x210)! Clearly, the crowd can be utilized to a great
degree. As features mostly represent complex and de-
rived types, such as the percentiles (x202 and x203),
these plots suggest that those types of features have a
very high predictive power. Additionally, they mostly
involve the submissions table in MOOCdb. This in-
cludes the lab grade (x206), pset grade (x207) and pre-
deadline submission time (x210)).

In the passive collaborator cohort, the feature most in-
dicative of stopout is the average predeadline submis-
sion time. The forum contributor cohort looks very
similar, but uses a broader spectrum of features. In
particular, we see that x5, the average length of forum
posts, is also highly predictive (of course, this could
not have shown up in the passive collaborator cohort,
as by definition those students do not participate in
the forum). Interestingly, we see a very low predictive
power from the number of forum posts(x3) and the
number of forum replies (x201), despite the fact that
the length of the forum post is very important. This
could imply that longer posts are indicative of more
engagement in the course, or a greater mastery of the
material.

In the both of our smaller cohorts, fully collabora-
tive and wiki contributor, the lab grade (x206) and
lab grade over time (x207) are the most predictive fea-
tures. Although both of these cohorts participated
in the Wiki, the number of Wiki edits (x4) actually
contains insignificantly small predictive power in both
cases. Both cohorts show similar distributions over-
all. Similar to the larger cohorts, features related to
submissions hold the most predictive power.

8. Related work

Efforts have been made by others to construct features
that describe learner behavior in MOOCs longitudi-
nally. Here in we present a few examples. (Kizilcec
et al., 2013) assemble a feature per-learner that has
four categorical values during each assessment period.
The four categorical values represent: on track (did as-
sessment on time), behind (turned in assessment late),
auditing (did not do assessment) and out (did not par-
ticipate in the course at all). Computationally these
can be captured by simply checking for submission ac-
tivity in each assessment period. Authors note that
they are easy to collect and are able to give powerful
insights about learners engagement.

(Halawa et al., 2014) extracted four features called
video-skip, assn-skip, lag and assn-performance. The
first two features inform whether a learner skipped
videos in the previous week and skipped the assign-
ments respectively. The third feature lag checks if
the learner is watching videos that are from previous
weeks, if the learner is watching videos from week 2
and the course is currently in week 3 this feature’s
value is 1. The fourth feature measures learner’s aver-
age quiz score.

(Balakrishnan & Coetzee, 2013) constructed 5 basic
features, two of which, stopout and the number of fo-
rum posts (x1 and x3), we independently used. The
other three features are time spent on the lecture
videos, number of threads viewed and number of times
progress page was checked.

(Yang et al., 2013) and (Ramesh et al., 2014), (Ramesh
et al., 2013) extract number of features from the forum
activity of the learners. In (Yang et al., 2013) they
are are length of post, thread starter (whether learner
started threads or not) and content length (number of
characters). Additionally, they construct a network of
“who talked to who" on the forums for every week and
extract features on a per-learner basis from this net-
work. (Ramesh et al., 2014) extract counts for postAc-
tivity, viewActivity and voteActivity from the learner
interactions on the forums. Additionally, they extract
four binary values called posts, votes, upvote, down-
vote which are given a value 1 if the learner has en-
gaged in that activity. They additionally tag the posts
using an automated tool called OpinionFinder. This
tool tags each post as subjective/objective and pos-
itive/negative. The features are then the number of
subjective posts the learner made and the number of
the positive posts the learner made out of the total
number of posts.

One of the limitations of the last three efforts is that
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Features 1- 27  Features 1- 27  Features 1- 27  

Week 1 Week 2 Week 3 
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i	  =	  

Figure 5. Aggregating feature 1’s weights to assemble relative feature importance for a single experiment. In this example,
the lag is 3. Three weeks data is used to predict a stopout in a future week. The Randomized logistic regression gives the
weights for all 27 features for all three weeks (unnormalized). To assemble the week invariance relative weight for feature
1 we sum the weights and divide it with the total weights. We note that this is a heuristic.

Figure 6. Feature importances for the passive collaborator cohort. Top 5 features that had the most predictive power
across multiple stopout predictive problems include average pre deadline submission time, submissions per correct problem,
average number of submissions in percent, correct submissions percent, pset grade over time.

they focus primarily on forum activity. While we ex-
tract some of these features as well we note that many
learners in fact do not participate in forums while
still actively engage in the course. For example in
the course we consider in this paper, only 7860 stu-
dents participate in the forums out of a total of 105622.
Hence, the analysis via these features is limited to only
a small proportion of the learners.

We note that, as per our categorization of features in
Section 6 most of these features fall into the simple cat-
egory. Many of these features solely access one mode of
student activity, for example submissions/assessments,
and do not require combining additional information
like correctness of the problem submissions. Many
of these features we independently extracted in self-

proposed, self-extracted and have evaluated their pre-
dictive power. For example, amount of the time spent
on lecture videos did not appear to have significant
predictive power when compared to other complex fea-
tures.

Our extraction effort is the first instance, to our knowl-
edge, wherein an extensive, sophisticated feature set
has been constructed on MOOC behavioral data. We
continue to add to this set and are accumulating a mas-
sive set of feature ideas and scripts that will seamlessly
run on the data model and are available for sharing and
re-use.
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Figure 7. Feature importances for the forum contributor cohort. Top 5 features that had the most predictive power across
multiple stopout predictive problems include lab grade over time, average pre deadline submission time, average length
of forum post, lab grade, average number of submissions in percent.

Figure 8. Feature importances for the fully collaborative cohort. Top 5 features that had the most predictive power across
multiple stopout predictive problems include lab grade over time, lab grade, pset grade, pset grade over time, average pre
deadline submission time.

9. Research findings and conclusions

Finding 1: Features proposed by crowd for the
stopout prediction problem mattered: For all
four cohorts we found that features proposed by the
crowd mattered significantly more than the features

we self-proposed, self-extracted.

Finding 2: Different features mattered for dif-
ferent cohorts: We also found interesting differences
between features that mattered between different co-
horts. For example, for the passive collaborator cohort
features that explain students success in assignments
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Figure 9. Feature importances for the wiki contributor cohort. Top 5 features that had the most predictive power across
multiple stopout predictive problems include lab grade over time, lab grade, average pre deadline submission time, pset
grade, average number of submissions in percent.

mattered along with the average pre deadline submis-
sion time. For cohorts that consisted of students that
interacted with other students, lab grade over time
mattered consistently. For cohort that participated on
forums only, the length of the forum post is a good
indicator whether they are likely to stopout.

Finding 3: Complex and derived features mat-
tered more We also found the more influential fea-
tures were quite nuanced and complex. They incor-
porated data from multiple modes of learner activity
(submissions, browsing and collaborations), required
carefully linking data fields. Relational features that
compared a learner to others and statistical summaries
were proposed by the crowd and mattered quite a bit.

What is next?

Addressing the challenges of feature discovery:
Human intuition and insight defy complete automa-
tion and are integral part of the process. We con-
clude that the best way to address this challenge is
to involve as many people (experts, instructors, stu-
dents, researchers as possible). People can play mul-
tiple roles. They can propose ideas or concepts from
which variables can be formed, help us extract vari-
ables given mock data, or validate many ideas that we
might ourselves have. To enable this, our next goal is
to scale this process. We are currently designing a web
based platform for collaborative feature definition and
discovery.

Addressing the challenges of curation and pro-
cessing To address these challenges, we propose :

• We propose the sharing and reuse of feature engi-
neerings scripts, such as those used in this paper.
that we be able widely share and re-use feature
generation scripts we used in this paper. We have
made sharing possible by standardizing the data
schema so all our scripts can be used for multi-
ple courses. We are currently testing our scripts
across courses to assess their reuse value on dif-
ferent platforms 8.

• We anticipate, given inherent differences among
courses, that some features will be present, others
will need adjustment and still new ones may yet
be engineered and their scripts shared. This is
an area in which we are currently active. We en-
dorse a promising direction towards shared meth-
ods that operationalize longitudinally per-learner
variables across MOOCs.
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