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Bring Your Own Learner! 
A Cloud-Based, Data-Parallel 

Commons for Machine Learning
Abstract—We introduce FCUBE, a cloud-based framework 
that enables machine learning researchers to contribute their 
learners to its community-shared repository. FCUBE exploits 
data parallelism in lieu of algorithmic parallelization to allow 
its users to efficiently tackle large data problems automatically. 
It passes random subsets of data generated via resampling to 
multiple learners that it executes simultaneously and then it 
combines their model predictions with a simple fusion tech-
nique. It is an example of what we have named a Bring Your 
Own Learner model. It allows multiple machine learning 
researchers to contribute algorithms in a plug-and-play style. 
We contend that the Bring Your Own Learner model signals a 
design shift in cloud-based machine learning infrastructure 

because it is capable of executing anyone’s supervised machine 
learning algorithm. We demonstrate FCUBE executing five 
different learners contributed by three different machine 
learning groups on a 100 node deployment on Amazon EC2. 
They collectively solve a publicly available classification prob-
lem trained with 11 million exemplars from the Higgs dataset.

I. Introduction

T echnological advances in storage paired with the more 
frequent practice of large scale archiving of internet 
and business transaction data have resulted in an 
explosion in the number of massive datasets, even in 

domains previously unstudied using data driven approaches [1].
To learn predictive models from these massive datasets it has 

become convenient to develop platforms that scale and provide 
access to multiple machine learning algorithms and approaches. 
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Examples include [2], [3], and [4]. The design strategy for these 
platforms to date has been to parallelize popular machine 
learning algorithms to take advantage of large quantities of 
computational resources. The strategy ignores, however, the 
prolific nature of machine learning research, that is, new algo-
rithms are always being designed and existing ones are contin-
uously improved over time.

With these circumstances in mind, we have developed the 
FCUBE project. It aspires to an ambitious yet attainable vision: 
a machine learning commons, demonstrated with evolutionary 
computation-based learners. First of its kind, FCUBE creates a 
commons where machine learning researchers bring their 
approaches to be integrated into a large-scale, cloud-based, 
data-parallel framework. FCUBE thus exemplifies what we call 
a Bring Your Own Learner model.

Three different core technological components have 
enabled us to realize a Bring Your Own Learner model. First, vir-
tualization improved the transferability and reuse of software 
applications by introducing virtual machines that can be set up 
with a complete execution environment (e.g. operating system, 
libraries, permissions, etc.). We use a virtual machine to encap-
sulate and integrate multiple learning approaches. Second, 
cloud computing provides anywhere, anytime access to scalable 
compute and storage, while it allows applications to be easily 
deployed to hundreds or even thousands of nodes. Third, our 
design embraces a data parallelization approach that is an inher-
ently scalable and robust way to address big data.

The name FCUBE is coined from the three F’s in Factor, 
Filter and Fuse .F 3^ h  FCUBE exploits a data parallel approach 
that uses a randomly reduced (factored) subset of the data to 
simultaneously train each of a set of independent learners. This 
factoring strategy alleviates the cost of executing each individ-
ual learner on all the data and allows FCUBE to offer shorter 
waiting times. It offers two noteworthy additional advantages. 
First, on the particular problem, though it cannot be pre-deter-
mined, one learner is likely to be superior to the others. 
FCUBE relatively effortlessly identifies which one is the best. 
Second, by combining learners with different designs using 
model fusion, FCUBE offers an ensemble-based solution that is 
likely to outperform any individual one in terms of accuracy.

From the point of view of data scientists or other engineers 
needing a data driven model, it is possible to bring a dataset 
and a machine learning problem to FCUBE to be solved by its 
multiple learners simultaneously. The FCUBE project seam-
lessly connects learners with data and allows large data prob-
lems to be tackled efficiently upon cloud computing infra-
structure. It makes it relatively effortless for a user to upload a 

dataset and, almost invisibly, harness cloud computing technol-
ogies, multiple learning algorithms and model representations 
to automatically generate massive multi-algorithm ensembles.

II. Contributions and Challenges
Our framework makes the following contributions:

A massive data-parallel approach: FCUBE is one of the 
first cloud-based, publicly available, data parallel solutions for 
large datasets [5]. The Factor, Filter and Fuse approach tackles 
large datasets and offers short waiting times.

Bring your own learner: FCUBE is the first standardized 
cloud-based machine learning platform where researchers can 
bring their supervised learning algorithms and straightfor-
wardly plug them into the platform. It is designed to deploy 
any stand-alone learner as long as the learner is compliant with 
an undemanding input/output specification. Once added to 
the framework, the learner becomes a part of the community 
of learners, thus enabling researchers:

❏❏ to obtain automatic, massive deployment on the cloud and 
access to FCUBE’s data factoring (via bootstrap aggregat-
ing) and variable factoring (via random subspace method),

❏❏ to become a part of an ensemble used for solving real world 
problems,

❏❏ to contrast and compare themselves with other approaches.
Bring your data and problem use case: FCUBE is 

envisioned to be used in the following scenarios:
❏❏ practitioners who have application specific problems based 
upon a large data set can use FCUBE with no require-
ment to be conversant in evolutionary computation or 
machine learning.

❏❏ researchers can organize a collaborative or competitive 
activity around a specific problem and its dataset.

❏❏ data scientists can organize data science camps around dif-
ferent pairs of problems and datasets using FCUBE as 
their machine learning engine.

Challenges
We addressed three primary challenges. Our first challenge 
involved defining standardized input/output interfaces for learn-
ers such that the learning algorithm and the cloud deployment layer 
were decoupled. Our goal was to enable integration in a plug-and-
play fashion and enable the integration of learners coded in a 
variety of popular programming languages (Java, Python, C++, 
etc). We first validated FCUBE’s learner interfaces by piloting 
them with a small group of researchers. They were good matches 
for the learners’ software design and algorithmic logic. This 
allowed us to refine them to make them even more general.
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Our second challenge required us to design a fusion tech-
nique that can work in classifier output space so that we could 
integrate heterogeneous learners. FCUBE allows a learner’s 
classifier to either produce continuous values or produce a 
label. Continuous results are then standardized to labels by 
applying a decision rule. We implemented and evaluated a 
number of decision level fusion techniques and finally decided 
upon logistic regression.

Our third challenge involved management of data when a 
large number of learners are deployed in a data-parallel manner. 
It is a challenge to efficiently supply all learning algorithms 
with different subsets of the training data, i.e. factor the data. To 
support factoring, FCUBE implements a distributed data fac-
toring service that is efficient but hidden from both FCUBE’s 
contributors and users.

III. Related Work
Ensemble-based learning strategies have been accomplished 
previously in [6]–[8]. In [6], authors generate multiple models 
from the same learner by providing different subsets of data. 
These solutions are customized for a specific learner that the 
researchers use. The approaches are also developed to enable the 
learning of an ensemble on a specific compute cluster. However, 
frameworks capable to learn 100’s of models on the cloud from 
a pool of heterogeneous learners are not readily available.

There have been efforts to enable evolutionary computa-
tion on parallel compute infrastructure. One such effort is EAsy 
Specification of Evolutionary Algorithms EASEA [9], where 
the authors claim that the user only needs to write some prob-
lem-related code. The framework is known to run on clusters 
and GPUs but to our knowledge does not run on the cloud. 
Another recent approach builds a framework called Distributed 
Evolutionary Algorithms in Python (DEAP) [10]. The platform 
is not as integrative as FCUBE because it was not designed for 
distribution on the cloud.

Several machine learning systems are being developed to 
run on the cloud and provide solutions for data science prob-

lems. Examples include [2], [3], and [4]. All these systems rely 
on learners provided (or assembled) by the system developers 
themselves and do not allow researchers to contribute to the 
core learning algorithm repository. We embrace an extensible 
approach that enables multiple researchers to contribute their 
learners believing that the result will be unique and diverse, 
ensemble learning systems.

Comparison frameworks are used to assess the performance 
of different applications, and can speed up their development 
and validation processes. One example is [11], a framework for 
comparing optimization algorithms in the context of logistics. 
However, most frameworks impose restrictions such as pro-
gramming language or parallelization strategy among others. 
Our insight is to provide, through virtualization, large-scale 
resource access without the user needing to be concerned 
about managing it. In FCUBE, contributions of external devel-
opers are totally decoupled from the framework software layer. 
This enables the integration of stand-alone approaches in a 
plug-and-play manner. Moreover, the hardware specifications 
of the virtual machine where the framework will be executed 
can be customized.

IV. Fcube Architecture
In this section, we give an overview of FCUBE’s functionality 
and introduce its different components. As depicted in Fig. 1, 
domain users bring new problems and interface with an 
FCUBE Server to generate massive data-parallel ensembles. 
The FCUBE deployment server launches a number of cloud 
nodes with a variety of learners executed with different algo-
rithm parameters. Nodes sample data randomly from the data 
server. Once learning is finished each learner provides the 
model back to the FCUBE server. The server then learns a 
meta-model (fused) using portion of data set aside for this, vali-
dates the model and outputs the final model to the domain 
user. The repository of learners is composed of the algorithms 
contributed by machine learning researchers.

A. FCUBE Components
1)		�Learners: FCUBE deploys 

stand-alone learners compli-
ant with an input/output 
specification.

2)		�FCUBE image: A cloud 
image or snapshot contains 
all the learner executables 
and the logic that instantiates 
a learner.

3)		�FCUBE Server: An FCUBE 
server is responsible for 
deploying FCUBE instances, 
retrieving models, fusing mod-
els, and evaluating the resulting 
meta-model. The server can be 
instantiated from a publicly 
available software repository.
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Figure 1 FCUBE commons’ typical use case.
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4)	FCUBE Data Server: Data are stored in a 
remote storage accessible from FCUBE 
instances. Several architectural solutions 
are viable. The EC2 version of FCUBE 
uses Amazon’s Simple Storage Service 
(S3). S3 is scalable both in size and 
throughput, eliminating the bottleneck 
introduced by the usage of traditional dis-
tributed file systems like NFS1. Additionally, S3 on Amazon 
AWS provides a drag-and-drop interface enabling external 
users to easily upload new datasets.

B. FCUBE Setup
Given a dataset ,D  before deployment we generate the splits 

, ..., , ,D D Dtr tr fn1  and ,Dte  corresponding to training splits, 
fusion data, and test data respectively. The learners executed in 
the same run access the training splits stored on the data server. 
Splitting the training data reduces the network traffic (and 
therefore the cost) of data transfers from the data server to the 
FCUBE instances. The data employed for fusion training ,D f^ h  
and for testing Dte^ h is accessed by the FCUBE server.

C. Deployment Sequence
The user only needs to interface with the FCUBE server. Four 
arguments need to be provided, namely number of FCUBE 
instances, learner name(s), duration of the learning process, and 
the parameter options file (see [5]). The deployment sequence 
depicted in Fig. 2a then takes place, but is hidden to the user.
1)	The server wakes up the instances in batches and waits 

until the instances respond.
2)	The server broadcasts the parameter options file to the instances.
3)	The server remotely triggers FCUBE’s factoring function-

ality and the execution of a learner.
4)	At each instance, the FCUBE factoring service generates 

both a sample of the data and set of parameters.
5)	The resulting factored data and factored parameters are passed 

as arguments to the specified learner and the learning pro-
cess starts.

Once all the FCUBE instances have finished learning, the 
sequence depicted in Fig. 2b takes place.
1)	The server retrieves the final model generated at each node.
2)	The server employs three processes: model output calculation, 

filtering and fusion (see Section V).
Running on-demand instances introduces a delay in the exe-
cution since instances need to be booted up. We have observed 
that the time necessary to raise these instances varies greatly 
from a cloud environment to another. In particular CSAIL’s 
OpenStack-based private cloud for development is far slower 
than Amazon EC2. In the latter, raising 100 instances in batches 
of 25 takes approximately 15 minutes. On the other hand, 
broadcasting the parameter options file to all the instances does 

1The development version of FCUBE used in our OpenStack private cloud em-
ploys a dedicated NFS volume to store the data. While this solution is straight-
forward, in practice it limits the scalability of our system. In fact, we have expe-
rienced contention issues when many running instances try to mount and access 
the NFS volume concurrently.

not introduce any significant delay, since the size of the trans-
ferred file is at most a few kilobytes. The proposed architecture 
is highly scalable since the factoring and the majority of the 
learning process take place at the instances, and therefore is 
executed in parallel.

V. Fcube: Factor, Filter, Fuse
In this section we provide the detailed description of FCUBE’s 
factoring, filtering, and fusion. We use the following notation:

Notation: X Xn1 "f  explanatory variables, Pi " empirical 
prior for class , costi Cij "  of declaring class i  when it is class 
,j Pij " probability of declaring class i  given class ,j R " Bayes-

ian risk function , .C P i j,i j ij ij# 6 !R=

A. Factoring as a Service
Factoring is what we call the generation of multiple learners 
each with its own subset of data, explanatory variables, and 
parameters. This process is governed by the parameters options 
(see example in Table 1).

(a)

(b)
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Figure 2 FCUBE flow: (a) deployment sequence and (b) model 
retrieval and fusion sequence.

FCUBE exemplifies what we call a Bring Your Own 
Learner model. It creates a commons where machine 
learning researchers add their stand-alone methods to 
the framework in a plug-and-play manner.
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Data factoring: The parameters options file provides the 
path to the remote data storage directory (NFS or S3 bucket 
name) where the training data are stored. FCUBE’s factoring 
service randomly picks one training split and transfers it to the 
instance storage. Then, a stochastic sampling process takes place 
where both exemplars and explanatory variables are factored 
according to the data_sample_rate and variable_sample_rate 
parameters. The first specifies the ratio of exemplars that will be 
sampled from the data, while the second specifies the ratio of 
the explanatory variables. It is important to note that we keep 
track of the variables used for training in each of the instances. 
This information will be necessary later to evaluate the gener-
ated models on unseen data.

Parameter factoring: The user decides what parameters 
will be factored (parameters for which a value will be sampled 
stochastically from the possible ranges/choices) and what 
parameters will be set to their default value. As mentioned in the 
previous section each FCUBE instance has built-in factoring 
functionality that will parse the parameters options file and gener-
ate a configuration (properties) file for the learner during the 
deployment phase.

For further details and examples of data and parameter fac-
toring, the reader is referred to FCUBE’s website2.

B. Filtering and Fusion
Once each node on the cloud has finished learning, the final 
model generated at each node is retrieved and used to build a 
meta-model. While data parallel approaches avoid the complexity 
of synchronization during the learning process, the fusion step is 
not without its own set of challenges. FCUBE provides a means 
of learning a fused model in the models’ output space, that is, pre-
dicted labels. To this end, the following three processes take place at 
the FCUBE server: models’ output calculation, filtering and fusion.

1) Calculate the models’ outputs: In this step, we calculate the 
outputs (predicted labels) of the models retrieved from the 
FCUBE run when evaluated on the split set aside for fusion 
training .D f  To evaluate a model on unseen data, two steps 
are necessary.

2http://f lexgp.github.io/FCUBE

1)	 First, we need to trim D f  such 
that the variables used for model 
evaluation match the variables 
used for training. To perform this 
operation, the information logged 
during the data factoring process is 
retrieved and the variables of D f  
are sampled accordingly. Note 
that, although this process intro-
duces a computational overhead, 
it also eliminates the need to 
impose variable labels or identifi-
ers, and thus provides higher flex-
ibility for the integration of 
learners in the system.

2)	Once the data have been processed, the model is evaluated. 
As a result, we obtain a prediction or label for each exem-
plar in .D f

This process is repeated for all the models retrieved from the 
FCUBE instances. Once all the models have been evaluated, 
the result is the matrix of model outputs L f  of n  rows and 
p 1+  columns, where n  is the number of exemplars in D f  
and p  is the number of models retrieved from the FCUBE 
run. The ( )p 1+ -th column corresponds to the true labels and 
is identical to the last column of .D f

2) Filtering: The filtering process consists of discarding the 
models that have a performance lower than a pre-set baseline. 
The baseline performance for classification corresponds to the 
cost incurred by a naive classifier that always predicts the 
majority class:

	
baseline , if

baseline , if

C P P

C P P

>

<

01 1 0

10 1 0

=

=
) � (1)

The split D f  set apart for fusion training is used to assess 
the cost (empirical Bayesian risk) of each classifier. Note that D f  
is unseen by the learner during training. The cost is computed 
as a weighted sum of the false positive and false negative rates:

	 tcos C P C P01 01 10 10= + � (2)

All the classifiers exhibiting a lower cost than the baseline are 
used to build a meta model via training.

3) Fusion or Learning a meta-model: Fusion is the final step of 
the FCUBE flow. It generates a fused model and its test set 
performance metrics. Most classification approaches rely on 
majority vote. Using the majority vote has a major drawback: it 
does not weight the individual models’ accuracies or the correla-
tions between models. Our fusion method implicitly enables us 
to consider the performance of individual classifiers and the 
dependence between the classifiers. We proceed as follows:

Step 1: train the meta-model: We run logistic regression 
on the matrix of model outputs ,L f  thus obtaining the meta-
model .i

Step 2: model evaluation on test data: We evaluate the 
filtered models on the testing set .Dte  As a result, we obtain 

Table 1 Parameters options file: an example of data factoring and parameter factoring 
configuration. For each exposed parameter, a default value and a range of choices can be specified.

Parameter Type Choice type Default Choices
Data Factoring Data String fixed fcube/train 

_folder
—

Data sample rate float discrete 0.1 {0.1, 0.2}
Variable  
sample rate

float discrete 1.0 {0.5, 0.75, 1}

Parameter  
Factoring

False negative  
weight

float range 0.5 [0.4:0.01:0.6]

Mutation rate float range 0.1 [0.05:0.05:0.2]

Crossover rate float range 0.7 [0.5:0.05:0.85]

Population size int discrete 1000 {1000, 5000}

Tournament size int discrete 2 {2, 7, 10}
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matrix of model outputs Lte  (one row for each exemplar in 
Dte  and one column for each filtered classifier).

Step 3: applying the meta-model: We apply the meta-
model i  to Lte  and report its performance metrics.

VI. A Repository of Algorithms  
for Collaborative Learning

A. Bring Your Own Learner
FCUBE enables machine learning researchers to incorporate 
their stand-alone algorithms in the framework. To ease this 
process and incur minimal overhead on their part, we treat 
learning algorithms as black boxes totally decoupled from the 
code of the framework. Learners must, however, be compliant 
with a standardized specification, i.e. a predetermined list of 
input parameters and expected outputs. Learners need to pro-
vide functionality to accomplish two use cases: train and pre-
dict. These two interfaces are depicted in Fig. 3. In the first 
case, learners take as inputs a path to a dataset, the duration of 
the learning process, and a properties file containing any addi-
tional parameters (see [5] for details) and output a file con-
taining exactly one model. The developer of the learner 
chooses the format of the output model file. Regarding the 
predict use case, we expect to obtain a file containing predic-
tions given a data path, a model file, and the destination path 
for the predictions.

B. A Collaborative Platform for Learning
One of the appealing aspects of this platform is that it provides a 
scaling service to algorithm developers that might not have the 
infrastructure necessary to tackle large-scale problems. Another 
positive aspect is that it allows learner comparison on the basis 
of a fixed computational budget. However, the final goal of this 
project goes beyond that of providing a framework where col-
laborators can deploy their algorithms. Instead, we aim at unit-
ing the efforts of worldwide developers of innovative learning 
algorithms to solve relevant problems of public domain.

With this idea in mind, we organized a collaborative Big 
Learning activity around FCUBE. The activity was part of the 
first edition of the EC for Big Data and Big Learning work-
shop held at GECCO 2014 [12]. Its call for participants 
invited collaborators to join a 
community that would solve 
large-scale problems of public 
interest with FCUBE. We 
received four learning algo-
rithms from external collabora-
tors. These algorithms were suc-
cessfully added to the platform; 
over time, we expect the popu-
lation of learners to keep 
increasing. The massive deploy-
ment of these learners with 
FCUBE enabled us to solve two 
problems based on large-scale 

datasets. Moreover, we showed that, by fusing the predictions 
of diverse algorithms, we can obtain better performance than 
that of individual algorithms alone. This evidence should con-
vince others in the machine learning community to contrib-
ute their efforts. We hoped that the workshop would retro-
spectively become regarded as the kickstart toward an 
automatic collaborative means of solving new problems.

The key to the success of this initiative was that both the 
workload of collaborators and their interaction with the 
FCUBE team (a team within the ALFA group at MIT) was 
minimal. We restricted the role of collaborators to only adapt 
their learners FCUBE’s standardized input/output specification 
(Fig. 3). The FCUBE team integrated the learners in the 
framework, performed all the factor, filter, fuse process and pro-
vided performance metrics. This is Deployment as a Service 
(DaaS) and is depicted in Fig. 4. Further details about the col-
laborative learning activity can be found in [12].

The activity allowed us to populate the repository of learn-
ers with the contributions from participants. In a future step, 
we will make a call for researchers of different domains to 
“bring their problem and dataset” and use FCUBE’s learners to 
perform large-scale learning tasks. Researchers will greatly 
benefit from a learner factoring framework which gives them 
access to publicly available learners. They will be able to easily 
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Figure 3 Learner black box specification for the (a) train use case 
and (b) predict use case.
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Figure 4 Collaborative Big Learning Activity taking place within the first edition of the EC for Big Data 
and Big Learning workshop, GECCO 2014. Participants simply provide stand-alone executables of their learners.
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solve their problem by broadly exploring supervised machine 
learning algorithms. FCUBE provides them with a means of 
using the cloud’s scalable and budget-flexible resources to meet 
a short term deadline or to speed up the process of obtaining a 
baseline result for their new problem.

C. Learning Algorithms
In this paper, we demonstrate the framework with five learners 
that are meant to be representative of the wide variety of learn-
ers existing in the EC community. Three of them, namely Rule 
List, Rule Tree, and GP Function, have been developed by the 
FCUBE team. Rule List and Rule Tree employ respectively a 
Genetic Algorithm and Genetic Programming to learn a rule-
based classifier. On the other hand, GP Function performs a 
search in the space of discriminant functions with Genetic Pro-
gramming. The remaining two algorithms were provided by 
external collaborators who kindly shared their software to test 
our framework before the learning activity period. In the fol-
lowing, we present these five learning algorithms.

1) Rule List Classifier: The Rule List classifier implements a 
Genetic Algorithm to search in the space of binary classifiers. 
Candidate solutions are lists containing one condition or rule 
for each explanatory variable of the problem.

Representation and Initial Population: Individuals are 
defined by the tuple { , , }I R A S=  where 

❏❏ R  is a list containing one rule for each explanatory variable 
of the problem. Each rule is written as x ci i#  or x c>i i  
where ci  is a constant and is in the range [ , ] .c x xmin max

i i i!

❏❏ A is a boolean vector such that the thi  position determines 
whether or not the thi  rule is applied to .xi

❏❏ S  is a strategy in { , , }DNF CNF MV  used to combine the 
outcomes of the active rules in the candidate solution.
DNF, CNF, and MV stand for disjunctive normal form, con-

junctive normal form, and majority vote.
Each individual of the initial population is created as follows:

1)	 For each variable ,xi  we choose randomly a value ci  from 
the interval [ , ]x xmin max

i i  and a relational operator in { , }< >  
to build the initial condition x c<i i  or .x c>i i  Then, we flip 
a coin to decide if the thi  rule is active.

2)	We select randomly one of three possible strategies, namely 
disjunctive, conjunctive normal form, or majority vote.
Evaluation: The prediction issued by a given individual 

depends on its voting strategy. In the CNF case, all the active rules 
need to be satisfied to emit a positive prediction. The majority vote 
strategy defines that at least half of the active conditions need to be 
satisfied to predict a positive class. Finally, a single satisfied condi-
tion triggers a positive prediction in the DNF case. We evaluate the 
individual for each exemplar of the dataset and compute its fitness 
as the Bayesian Risk introduced in (2).

2) Rule Tree Classifier: The training process of the Rule Tree 
classifier is divided into two steps. In a preprocessing step, a set of 
conditions in the form of a x bi# #  are determined for each 
explanatory variable. In the second step, a Genetic Program-
ming strategy is adopted to search in the space of boolean rules 
using the generated conditions as leaves of the GP trees.

Preprocessing Step: The conditions for each explanatory 
variable of the problem are obtained independently. Given a 
variable ,x  we proceed as follows:
1)	The probability density function of the variable when con-

ditioned on the two classes is estimated via nonparametric 
Kernel Density Estimation (KDE). Given a variable x  and 
a class ,H j  the probability density function of the distribu-
tion ( | )p x H j  at a point y  is estimated as follows:

	 ( ) ( ( ))
( )

f y n K y x i nh K h
y x i1 1

H h
i

n

j
i

n
j

1 1
j = - =

-

= =

t c m/ / � (3)

�where x j  is the subset of values of x  with label H j  and n  
is the size of .x j  We employ the Gaussian basis function

( )K u e1 2 u
2
1 2

r= -` j  and set the bandwidth parameter h to

� . ,n n4 3 1 065 5
1

5
1

-v v
-t t` j  where vt is the standard deviation 

of .x j

2)	We then discretize the range of values of the variable x  
into m  equal partitions and compute ( )f xH0

t  and ( )f xH1
t  at 

each of the m  steps.
3)	As depicted in Fig. 5a, a new condition in the form 

a x b# #  is created every time the estimated density 
functions ( )f xH0

t  and ( )f xH1
t  cross each other.
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Figure 5 Rule Tree Classifier: preprocessing step and representation. 
(a) Obtaining the conditions for variables x1  and .x2  In this example, 
four conditions ( , , , )c c c c1 2 3 4  are retrieved for the first variable while 
the analysis of the second variable results in the three conditions 

, , .c c c5 6 7  (b) Examples of boolean rules coded with GP trees.
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At the end of the preprocessing, we obtain a set of conditions 
{ , , ..., },C c c ck1 2=  where each condition refers to a unique 

interval for one of the explanatory variables.
Representation and Initial Population: As illustrated in 

Fig. 5b, candidate solutions are Boolean expressions built with 
the set of operators { , , } .and or not  These expressions are coded 
as GP trees where the leaves correspond to the conditions 

{ , , ..., }C c c ck1 2=  retrieved in the preprocessing step. The popu-
lation is initialized with a ramped half-and-half strategy.

Evaluation: The implemented multi-objective approach is 
based on Non-Dominated Sorting Genetic Algorithm-II 
(NSGA-II) [13] and targets both performance and complexity. 
Classifier performance is calculated by evaluating (2). The com-
plexity measure employed is the Subtree Complexity intro-
duced in [14].

3) GP Function Classifier: The third binary classifier, first pre-
sented in [15], also implements a multi-objective Genetic Pro-
gramming strategy based on NSGA-II. Given a set of explana-
tory variables ,X-  we search for a nonlinear function ( )y f X= r  
such the distributions ( ( )| )p f X H0r  and ( ( )| )p f X H1r  are best 
separated. After learning the function, a threshold m  is used to 
build the decision rule
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that determines whether a given output represents a class 0 or 
class 1 prediction. This approach is 
graphically depicted in Fig. 6a.

Representation and Initial 
Population: As in the Rule-
Tree classifier, individuals are 
coded with GP trees and the 
population is initialized with a 
ramped half-and-half strategy. 
However, in this case the leaves 
of the trees are variables of the 
problem and individuals are 
numerical expressions built with 
the following set of operators:

ops exp, square, cube, sqrt
, ,/, , sin, cos, log,)

=
+ -' 1

�
�

(4)

Evaluation: Since the goal is 
to find the model with the high-
est discriminatory power between 
the two classes, the area under the 
ROC curve is used as fitness 
function to guide the search. 
Simultaneously, we minimize the 
complexity of the models to pre-
vent bloating issues. Here in we 
present the steps involved in eval-
uating the fitness function.

Area under the ROC Curve: To compute the area 
under the ROC curve, we evaluate the model for each 
exemplar i  of the dataset and vary the threshold m  in the 
decision rule
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We then evaluate the two errors for each threshold and com-
pute the model’s area under the ROC curve. We proceed as 
follows:
1)	Evaluate the GP tree on the training exemplars resulting 

in .y n1f

2)	Retrieve the ymax  and ymin  values for the model outputs 
.y n1f

3)	Normalize the outputs of the model with the obtained 
boundaries.

4)	Vary the threshold [ ; ]0 1!m  and apply the decision rule 
as above.

5)	Obtain the False Positive and True Positive rates for each 
value of m

6)	Compute the area under the ROC curve with the 
obtained rates.
Complexity: As in the Rule Tree classifier, we employ the 

Subtree Complexity measure.
Threshold selection: The last step consists in identify-

ing the threshold m  for the best model ( )f Xr  such that the 
decision rule

Class 1 Class 2 Class 2 Class 1

X1 Xn f(X)

Class 1 Class 2

Search f(X)
Such That

Moving Threshold ROC Curve

TP
Rate

FP Ratem0 m1 m2 m3 m4 m5 m6

Class 1 Class 2

0 1f(X)

Class 1 Class 2

Cost FunctionEval Functionlog sin

+

+

exp

X4
X1

X5

Class 1 Class 2
Moving ThresholdBest Model Final Threshold

0 1f(X) 0 1f(X)

(a)

(b)

(c)

Threshold

Figure 6 GP Function classifier: (a) search for the nonlinear function ( )f Xr  such the distributions 
( ( ) | )p f X H0r  and ( ( ) | )p f X H1r  are best separated. (b) GP Function evaluation: a moving threshold is used 

to compute the area under the ROC curve. (c) Threshold selection for the final model.
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minimizes the weighted sum of the false positive and false neg-
ative rates as in Eq.(2). This is achieved by performing a grid 
search over .m  This process is carried out post-hoc after the 
classifier is trained.

4) Memetic Pittsburgh Learning Classifier System: Memetic 
Pittsburgh Learning Classifier System (MPLCS) is a learning 
algorithm based on the GAssist Pittsburgh Learning Classifier 
System. MPLCS evolves variable-length rule sets. This version 
of the algorithm incorporates a variety of efficiency enhance-
ment mechanisms. In particular, the algorithm implements a 
memetic multi-parent crossover operator. The reader can find 
extensive documentation of this algorithm in [16]–[18].

5) Symbiotic Bid-Based Genetic Programming: Symbiotic Bid-
Based Genetic Programming (SBB) is a learning algorithm 
that co-evolves a classifier population and a population of 
exemplars. Classifiers are grouped into teams (ensembles) that 
emit predictions according to a sophisticated bidding strategy. 
For an extensive description of this algorithm, the reader is 
referred to [19]–[22].

VII. Experimental Work

A. Higgs Dataset
We present our results on the Higgs dataset [23]. The Higgs 
dataset is a recently released binary classification problem 
with 11 million exemplars generated via Monte Carlo simu-
lations. The goal is to differentiate cases where the Higgs 
boson is produced and cases corresponding to a background 
process. It contains 28 features, where the first 21 are kine-
matic properties measured by the particle detectors in the 
accelerator. The last seven features are higher level features 
proposed by domain experts, and are functions of the first 21. 
As in [23], the last 500,000 exemplars ( )Dte  are used for test-
ing. The training set ( )Dtr  is in turn split into 10 folds such 
that the class balance is maintained. The first nine splits 

, ...,D Dtr tr1 9  are allocated in the Data Server and are accessed 
from the FCUBE instances and used for learning. The 10th 
split ( )D f  must be available from the FCUBE server and is 
used for filtering and training the meta-model (fusion). 
Finally, the testing set Dte  is used to test the performance of 
the retrieved meta-model. The characteristics of these splits 
are summarized in Table 2.

B. Massive Data-Parallel Evolutionary Learning
We design the ensemble configuration of the FCUBE runs in 
the same way the participants of the collaborative activity pro-
ceeded. First, we assign a fixed computation budget to each of 
the learners, Rule List (RL), Rule Tree (RT), GP Function 
(GPF), Multiple Parents Pittsburgh Learning Classifier System 
(MPLCS), and Symbiotic Bid- Based Genetic Programming 
(SBBJ). In this case, each learner is assigned $20 on Amazon 
EC2. Then, we choose a data and parameter factoring strategy and a 
combination of number of instances, flavor, and running time that 
fits into the budget:

❏❏ Data and parameter factoring strategy: Each of the deployed 
instances uses FCUBE’s factoring service to generate a 1% 
split of the training data (105,000 exemplars) to learn from 
it. Note that all the explanatory variables of the problem are 
considered at each instance. When required as a parameter, 
the weight of false negative errors is set to 0.47 according to 
the class balance of the problem. The rest of the parameters 
of the learners are set to their default values.

❏❏ Number of instances: We deploy in parallel 100 instances of 
each of the five integrated learners: RL, RT, GPF, MPLCS, 
and SBBJ. As a result, we obtain 100 classifiers per algo-
rithm, each trained with a different 1% of the data. With this 
strategy, we expect to cover a significant part of the training 
data in the learning process.

❏❏ Flavor: The flavor corresponds to the specifications of the 
virtual machines used in the cloud runs. The more comput-
ing power the virtual machine has, the more expensive it is. 
However, the price of the flavor does not increase linearly 
with the specifications of the virtual machine. In other 
words, virtual machines with higher computational power 
present a better compute/cost trade-off. With this idea in 
mind, we exploit the evaluation level parallelism of the 
learners Rule List, Rule Tree, and GP Function by execut-
ing them in a 4-threaded fashion. In accordance with this 
setup, we employ the compute-optimized c3.xlarge flavor 
that counts 4 virtual CPUs. The remaining learners, 
MPLCS and SBBJ, run in a single-threaded fashion. There-
fore, we employ the cheaper single-core m3.medium flavor 
($0.070 per Hour).

❏❏ Running time: The running time is set according to the two 
previous parameters and the established budget. The $20 
budget allows to run 100 learners executed with the 
c3.xlarge flavor ($0.210 per instance per hour) for 57 minutes 
while learners using the m3.medium flavor ($0.070 per 
instance per hour) will run for 171 minutes.

The configuration of the runs is summarized in 
Table  3: a total of 500 learning algorithms are exe-
cuted, and a total of 1,800 CPU hours have been nec-
essary to generate the results presented in this paper.

C. Performance of Individual Learners
FCUBE exploits rapidly trained but weak classifiers 
with diverse behaviors to produce robust ensembles. As 
a first analysis of this diversity, we present in Fig. 7 the 

Table 2 Characteristics of the Higgs dataset and of the generated splits.

D D...tr tr1 9 Df Dte Total

Exemplars 1,050,000 1,050,000 500,000 11,000,000
Features 28 28 28 28
Negative exemplars 47% 47% 47% 47%
Positive exemplars 53% 53% 53% 53%
function training fusion train testing —
accessed by FCUBE instances FCUBE Server —
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false positive rate and the 
true positive rate of all the 
classifiers generated with 
the five learners. Two 
important observations are 
worth commenting. First, 
MPLCS and SBBJ generate 
classifiers covering a wide 
section of the TPR/FPR 
trade-off. On the other 
hand, RL, RT, and GPF are, 
broadly speaking, special-
ized in some region of the 
front. This is explained by 
the fact that RL, RT, and 
GPF receive the cost of the 
two errors as parameters of 
the learning process. As a result, the models generated by these 
algorithms are concentrated in the region of the trade-off that 
minimizes the established cost. Second, it is interesting to see that 
all the regions of the trade-off are covered by one or another 
learner. The Rule Tree learner is however clearly dominated by 
the other learners, and thus is not likely to contribute to build a 
collaborative solution. This analysis confirms that EC-based 
learners generate classifiers that exhibit a remarkable diversity.

To compare the performance of the different learners, we 
analyze the cost (Bayesian Risk) of the individual classifiers as 
in (2). The weight of the two errors is set according to the class 
balance of the problem with the goal of penalizing classifiers 
that do not perform well on the minority class. Thus, in this 
case, we set the weights of the false positive and false negative 
rates to 0.53 and 0.47 respectively. This analysis is useful to 
determine, for the considered problem, what are the most 
appropriate learners to use. Fig. 8a shows the testing set cost for 
the five different learners. Additionally, we plot the cost of a 
naive classifier that always predicts the majority class. Note that 

classifiers exhibiting a cost higher than the baseline with 
respect to the fusion set D f  have been discarded during the fil-
tering process. We can see that all the learners improve on the 
baseline cost. GP Function learner generates classifiers that out-
perform those generated with Rule Tree and Rule List. SBBJ 
and MPLCS generate classifiers that cover a wide range of val-
ues, it is therefore hard to compare them against the other 
learners. The next step of the analysis consists in determining 
whether the observed diversity helps building ensembles that 
will improve the accuracy of the independent classifiers.

Table 3 Configuration and cost of the five ensemble strategies deployed on Amazon EC2 with FCUBE.

Learner Rule List Rule Tree GPF MPLCS SBBJ Total

Factoring  
Configuration

Data sample 
rate

1% 1% 1% 1% 1% —

Variable  
sample rate

100% 100% 100% 100% 100% —

False negative 
weight

0.47 0.47 0.47 — — —

Ensemble  
Configuration

Budget $20 $20 $20 $20 $20 $100

Instances 100 100 100 100 100 500
Flavor c3.xlarge c3.xlarge c3.xlarge m3.medium m3.medium —
Virtual CPUs 4 4 4 1 1 —
Cost per hour $0.210 $0.210 $0.210 $0.070 $0.070 —
Time (min) 57 57 57 171 171 —
Virtual CPU 
hours

4 # 100 4 # 100 4 # 100 3 # 100 3 # 100 1800
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Figure 7 Trade-off between false positive rate and true positive rate 
of the 500 classifiers evaluated on the test set. We train 100 classifi-
ers with each of the five learners integrated in the framework.
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D. Performance of the Fused Models
For each learner, we build a meta-model that combines 
the predictions of the 100 models retr ieved from the 
FCUBE run. Additionally, we obtain a fused model that 
combines all 500 models, i.e. that combines models 
obtained with all five learners. We employ two different 
methods for the fusion process: majority vote and logistic 
regression (see Section V-B).

The cost of the meta-models obtained with majority vote 
and logistic regression are reported in Table 4 and shown in 
Fig. 8b. Note that logistic regression provides a probability for 
each test case. We apply the decision rule
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to determine whether a class 0 or class 1 prediction is emitted. 
For comparative purposes, we also show the cost of the best 
classifier of the run. Majority vote does not provide any benefit 
with respect to the best model of the run. On the other hand, 
the logistic regression fusion technique systematically reduces 
the cost of the best classifier of the run. This effect is remark-
able in the case of MPLCS-100 and SBBJ-100 fused models 
since they are now as competitive as GPF-100. Training multi-
algorithm ensembles is shown to be beneficial since the ALL-
500 meta-model outperforms all the strategies. This verifies the 
hypothesis of the need of diversity and is an encouraging result 
to promote the growth of our repository of learners.

We compute the area under the curve (AUC) of the fused 
model trained via Logistic Regression. To this end, we employ 
a moving threshold m  in the decision rule
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where yi  is the probability vector returned by the logistic regres-
sion algorithm. The obtained AUC is compared against the per-
formance of Boosted Decision Trees (BDT), Neural Networks 
(NN), and Deep Neural Networks (DNN) reported in [23]. It is 
important to note that this comparison might not be accurate 
for BDT because precise details of the AUC calculation were not 

provided. Moreover, [23] does not specify the time 
required to train the classifiers. This comparative analysis 
is shown in Table 5. Within the methods tested in this 
work, the best AUC is achieved by the ensemble com-
posed of all 500 classifiers (i.e., ALL-500). The strategies 
GPF-100, MPLCS-100, and SBBJ-100 present a similar 
AUC, and clearly outperform RL-100 and RT-100. 
When compared to the results presented in the cited 
work, we can see that our ensemble methods are inferior 

yet competitive against Boosted Decision Trees and Neural Net-
works. However, our results are clearly outperformed by Deep 
Neural Networks. The results presented in this work are none-
theless encouraging since we aimed at fast learning times: 
approximately one hour in the case of RL-100, RT-100, and 
GPF-100 and nearly three hours (with less computational capa-
bility) for MPLCS-100 and SBBJ-100. Moreover, the learners 
tested in these experiments are run with their default parameters, 
i.e. they have not been fine-tuned for the targeted problem.

E. Analysis of the Diversity of the  
Different Learning Algorithms
In the previous analysis, we have verified that considering dif-
ferent learning algorithms provides better accuracy. We now 
perform a deeper analysis of the predictions of the different 
models with the goal of determining which algorithms are 
complementary, in the sense that they produce classifiers that 
are competitive and yet emit dissimilar predictions. This infor-
mation is extremely valuable since it will allow appropriate 
combinations of learners to be selected when new problems 
are fed into the framework.

We first analyze the correlation between classifiers. Fig. 9a 
shows the pairwise correlation coefficient t  for all the 500 
classifiers. This metric has been widely used to assess the diver-
sity of ensemble classifiers [24] and takes into account the four 
possible combinations of hit/miss given two classifiers yi  and 

.y j  The coefficient ,i jt  is computed as follows:

	
( ) ( ) ( ) ( )N N N N N N N N

N N N N
,i j 11 10 01 00 11 01 10 00

11 00 01 10

t =
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- �(5)

where
❏❏ �N 11  is the number of examples classified correctly by both 
classifiers,

❏❏ �N 10  is the number of examples classified correctly by yi  
but incorrectly by ,y j

❏❏ �N 01  is the number of examples classified incorrectly by yi  
and correctly by ,y j

❏❏ �N 00 is the number of examples misclassified by both yi and .y j

Classifiers that tend to rec-
ognize the same exemplars 
are cor related, and thus 
depicted in yellow and red 
(positive values). On the other 
hand, negative values indicate 
that the two classifiers tend to 

Table 4 Cost or Bayesian Risk of the best model of the run  
and fused models obtained with Majority Vote and Logistic Regression. 
Lower is better.

Method RL-100 RT-100 GPF-100 MPLCS-100 SBBJ-100 ALL-500

Best of Run 0.395 0.400 0.315 0.330 0.356 —
MV 0.428 0.397 0.317 0.405 0.405 0.3274
Log Reg 0.346 0.378 0.311 0.312 0.318 0.292

Table 5 Area under the curve of the methods reported in [23] (BDT, NN, and DN) and of the 
ensembles generated with the different evolutionary learners and fused with logistic regression 
(RL-100, RT-100, GPF-100, MPLCS-100, SBBJ-100, and ALL-500).

Method BDT [23] NN [23] DNN [23] RL-100 RT-100 GPF-100 MPLCS-100 SBBJ-100 ALL-500

AUC 0.810 0.816 0.885 0.697 0.670 0.746 0.751 0.747 0.779
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miss on different exemplars. It is 
possible to identify squared 
areas, each corresponding to 100 
classifiers generated with the 
five different learners. The 
squared areas confirm the diver-
sity obtained with different 
learners, even if the final accu-
racy of the trained classifiers is 
similar. As opposed to MPLCS 
and SBBJ, which present a high 
diversity, RL and GPF do not 
exhibit a great variance within 
their 100 classifiers. In these 
cases, it is not necessary to run 
many copies of the algorithm. 
However, it is also possible that 
the Higgs dataset does not pres-
ent a high variance and, as a result, the retrieved classifiers are 
similar even when they are trained with only 1% of the data.

When we compare the correlation across learners, we 
observe that both RL and RT generate classifiers that are uncor-
related with the rest. This might be due to the fact that their per-
formance is lower, and therefore we will exclude them going 
forward. GPF and SBBJ generate correlated classifiers, and thus 
should not be used together to generate ensembles. On the other 
hand, MPLCS seems to be different both from GPF and SBBJ, 
and thus is a solid candidate for multi-algorithm ensembles.

We introduce a different measure that allows us to quantify 
how complementary the pairs of classifiers are. We define comple-
mentarity as the ratio between the number of exemplars on which 

at least one of the classifiers is correct to the total number of 
exemplars. In other words, this measure represents the accuracy of 
the combined prediction of two classifiers given an ideal fusion 
method. This measure is given by:

	 complementarity
N N N N

N N N
,i j 11 10 01 00

01 10 11

=
+ + +
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The results of this analysis are shown in Fig. 9b. While RL 
exhibits a poor performance, its combinations with MPLCS 
and SBBJ seem to be promising. However, it is due to the fact 
that some of those classifiers tend to predict the majority class 
despite balanced data. This makes them unsuitable for fusion. 
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Figure 9 Analysis of the diversity of the classifier ensembles. (a) Pairwise correlation coefficient t  between the 500 classifiers: positive values 
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Therefore, we continue with only the top learners, i.e. GPF, 
MPLCS, and SBBJ. It is very interesting to observe that some 
combinations of GPF and MPLCS classifiers have a great 
potential, reaching values of up to 0.92.

We now study the similarities of the predictions of the five 
fused models, each built with models obtained with a single 
learning algorithm. In this case, we employ the probabilities 
returned by the logistic regression process rather than the pre-
dictions or labels. Since these probabilities are continuous val-
ues, we can generate the 5 # 5 correlation matrix, where each 
row corresponds to one of the five learners. The patterns 
observed in the analysis of individuals classifiers also take place 
in this case. We can see that RL-100 and RT-100 are highly 
uncorrelated with the other methods. SBBJ-100 is correlated 
to both GPF-100 and MPLCS-100. However, as observed in 
previous results, the correlation between GPF-100 and SBBJ-
100 is lower, thus confirming the great potential of combining 
these two learners.

VIII. Conclusion
We have introduced FCUBE, a machine learning framework 
that harnesses cloud computing to solve largescale supervised 
learning problems via massive ensemble learning. It exploits the 
enhanced software transferability provided by virtualized cloud 
resources to automate the use of learning algorithms developed 
within the Evolutionary Computation community. The frame-
work interfaces are carefully designed to enable machine learn-
ing researchers to easily import their learners and benefit from 
a massive data-parallel deployment of their algorithm with 
minimal overhead on their part. We refer to this concept as 
Bring Your Own Learner (BYOL).

We have demonstrated the framework by integrating five 
different learners and deploying them in a massive data-paral-
lel fashion on Amazon EC2. We execute 100 runs per learner, 
each with 1% of the data, in as little as one hour. The 
employed algorithms are representative of evolutionary com-
putation state-of-the-art. In particular, two of them are highly 
validated algorithms provided by external collaborators. We 
present results on a publicly available problem composed of 
11 million exemplars based upon the Higgs dataset. The 
ensemble strategies adopted in this work are promising since 
we obtain a competitive performance while aiming at fast 
learning. We also analyze the remarkable diversity of the clas-
sifiers trained with the different evolutionary computation 
techniques. The goal of such analysis is to determine appro-
priate combinations of learners for future problems that the 
framework could encounter.

This project aspires to a commons where new large-scale 
problems can be uploaded and quickly solved thanks to a com-
munity-shared repository of learning algorithms and cloud 
computing. We encourage the machine learning community to 
contribute to the repository of learners and we offer the frame-
work to all others who need a large-scale, supervised machine 
learning tool.
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