
Digital Object Identifier 10.1109/MCI.2014.2369892
Date of publication: 14 January 2015

Bring Your Own Learner!
A Cloud-Based, Data-Parallel

Commons for Machine Learning
Abstract—We introduce FCUBE, a cloud-based framework
that enables machine learning researchers to contribute their
learners to its community-shared repository. FCUBE exploits
data parallelism in lieu of algorithmic parallelization to allow
its users to efficiently tackle large data problems automatically.
It passes random subsets of data generated via resampling to
multiple learners that it executes simultaneously and then it
combines their model predictions with a simple fusion tech-
nique. It is an example of what we have named a Bring Your
Own Learner model. It allows multiple machine learning
researchers to contribute algorithms in a plug-and-play style.
We contend that the Bring Your Own Learner model signals a
design shift in cloud-based machine learning infrastructure

because it is capable of executing anyone’s supervised machine
learning algorithm. We demonstrate FCUBE executing five
different learners contributed by three different machine
learning groups on a 100 node deployment on Amazon EC2.
They collectively solve a publicly available classification prob-
lem trained with 11 million exemplars from the Higgs dataset.

I. Introduction

T echnological advances in storage paired with the more
frequent practice of large scale archiving of internet
and business transaction data have resulted in an
explosion in the number of massive datasets, even in

domains previously unstudied using data driven approaches [1].
To learn predictive models from these massive datasets it has

become convenient to develop platforms that scale and provide
access to multiple machine learning algorithms and approaches.

20 IEEE Computational intelligence magazine | february 2015� 1556-603x/15©2015ieee

image licensed by ingram publishing

Ignacio Arnaldo, Kalyan Veeramachaneni,
Andrew Song, and Una-May O’Reilly
Anyscale Learning For All (ALFA) Group,
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institue of Technology,
Cambridge, Massachusetts, USA

february 2015 | IEEE Computational intelligence magazine 21

Examples include [2], [3], and [4]. The design strategy for these
platforms to date has been to parallelize popular machine
learning algorithms to take advantage of large quantities of
computational resources. The strategy ignores, however, the
prolific nature of machine learning research, that is, new algo-
rithms are always being designed and existing ones are contin-
uously improved over time.

With these circumstances in mind, we have developed the
FCUBE project. It aspires to an ambitious yet attainable vision:
a machine learning commons, demonstrated with evolutionary
computation-based learners. First of its kind, FCUBE creates a
commons where machine learning researchers bring their
approaches to be integrated into a large-scale, cloud-based,
data-parallel framework. FCUBE thus exemplifies what we call
a Bring Your Own Learner model.

Three different core technological components have
enabled us to realize a Bring Your Own Learner model. First, vir-
tualization improved the transferability and reuse of software
applications by introducing virtual machines that can be set up
with a complete execution environment (e.g. operating system,
libraries, permissions, etc.). We use a virtual machine to encap-
sulate and integrate multiple learning approaches. Second,
cloud computing provides anywhere, anytime access to scalable
compute and storage, while it allows applications to be easily
deployed to hundreds or even thousands of nodes. Third, our
design embraces a data parallelization approach that is an inher-
ently scalable and robust way to address big data.

The name FCUBE is coined from the three F’s in Factor,
Filter and Fuse .F 3^ h FCUBE exploits a data parallel approach
that uses a randomly reduced (factored) subset of the data to
simultaneously train each of a set of independent learners. This
factoring strategy alleviates the cost of executing each individ-
ual learner on all the data and allows FCUBE to offer shorter
waiting times. It offers two noteworthy additional advantages.
First, on the particular problem, though it cannot be pre-deter-
mined, one learner is likely to be superior to the others.
FCUBE relatively effortlessly identifies which one is the best.
Second, by combining learners with different designs using
model fusion, FCUBE offers an ensemble-based solution that is
likely to outperform any individual one in terms of accuracy.

From the point of view of data scientists or other engineers
needing a data driven model, it is possible to bring a dataset
and a machine learning problem to FCUBE to be solved by its
multiple learners simultaneously. The FCUBE project seam-
lessly connects learners with data and allows large data prob-
lems to be tackled efficiently upon cloud computing infra-
structure. It makes it relatively effortless for a user to upload a

dataset and, almost invisibly, harness cloud computing technol-
ogies, multiple learning algorithms and model representations
to automatically generate massive multi-algorithm ensembles.

II. Contributions and Challenges
Our framework makes the following contributions:

A massive data-parallel approach: FCUBE is one of the
first cloud-based, publicly available, data parallel solutions for
large datasets [5]. The Factor, Filter and Fuse approach tackles
large datasets and offers short waiting times.

Bring your own learner: FCUBE is the first standardized
cloud-based machine learning platform where researchers can
bring their supervised learning algorithms and straightfor-
wardly plug them into the platform. It is designed to deploy
any stand-alone learner as long as the learner is compliant with
an undemanding input/output specification. Once added to
the framework, the learner becomes a part of the community
of learners, thus enabling researchers:

❏❏ to obtain automatic, massive deployment on the cloud and
access to FCUBE’s data factoring (via bootstrap aggregat-
ing) and variable factoring (via random subspace method),

❏❏ to become a part of an ensemble used for solving real world
problems,

❏❏ to contrast and compare themselves with other approaches.
Bring your data and problem use case: FCUBE is

envisioned to be used in the following scenarios:
❏❏ practitioners who have application specific problems based
upon a large data set can use FCUBE with no require-
ment to be conversant in evolutionary computation or
machine learning.

❏❏ researchers can organize a collaborative or competitive
activity around a specific problem and its dataset.

❏❏ data scientists can organize data science camps around dif-
ferent pairs of problems and datasets using FCUBE as
their machine learning engine.

Challenges
We addressed three primary challenges. Our first challenge
involved defining standardized input/output interfaces for learn-
ers such that the learning algorithm and the cloud deployment layer
were decoupled. Our goal was to enable integration in a plug-and-
play fashion and enable the integration of learners coded in a
variety of popular programming languages (Java, Python, C++,
etc). We first validated FCUBE’s learner interfaces by piloting
them with a small group of researchers. They were good matches
for the learners’ software design and algorithmic logic. This
allowed us to refine them to make them even more general.

22 IEEE Computational intelligence magazine | february 2015

Our second challenge required us to design a fusion tech-
nique that can work in classifier output space so that we could
integrate heterogeneous learners. FCUBE allows a learner’s
classifier to either produce continuous values or produce a
label. Continuous results are then standardized to labels by
applying a decision rule. We implemented and evaluated a
number of decision level fusion techniques and finally decided
upon logistic regression.

Our third challenge involved management of data when a
large number of learners are deployed in a data-parallel manner.
It is a challenge to efficiently supply all learning algorithms
with different subsets of the training data, i.e. factor the data. To
support factoring, FCUBE implements a distributed data fac-
toring service that is efficient but hidden from both FCUBE’s
contributors and users.

III. Related Work
Ensemble-based learning strategies have been accomplished
previously in [6]–[8]. In [6], authors generate multiple models
from the same learner by providing different subsets of data.
These solutions are customized for a specific learner that the
researchers use. The approaches are also developed to enable the
learning of an ensemble on a specific compute cluster. However,
frameworks capable to learn 100’s of models on the cloud from
a pool of heterogeneous learners are not readily available.

There have been efforts to enable evolutionary computa-
tion on parallel compute infrastructure. One such effort is EAsy
Specification of Evolutionary Algorithms EASEA [9], where
the authors claim that the user only needs to write some prob-
lem-related code. The framework is known to run on clusters
and GPUs but to our knowledge does not run on the cloud.
Another recent approach builds a framework called Distributed
Evolutionary Algorithms in Python (DEAP) [10]. The platform
is not as integrative as FCUBE because it was not designed for
distribution on the cloud.

Several machine learning systems are being developed to
run on the cloud and provide solutions for data science prob-

lems. Examples include [2], [3], and [4]. All these systems rely
on learners provided (or assembled) by the system developers
themselves and do not allow researchers to contribute to the
core learning algorithm repository. We embrace an extensible
approach that enables multiple researchers to contribute their
learners believing that the result will be unique and diverse,
ensemble learning systems.

Comparison frameworks are used to assess the performance
of different applications, and can speed up their development
and validation processes. One example is [11], a framework for
comparing optimization algorithms in the context of logistics.
However, most frameworks impose restrictions such as pro-
gramming language or parallelization strategy among others.
Our insight is to provide, through virtualization, large-scale
resource access without the user needing to be concerned
about managing it. In FCUBE, contributions of external devel-
opers are totally decoupled from the framework software layer.
This enables the integration of stand-alone approaches in a
plug-and-play manner. Moreover, the hardware specifications
of the virtual machine where the framework will be executed
can be customized.

IV. Fcube Architecture
In this section, we give an overview of FCUBE’s functionality
and introduce its different components. As depicted in Fig. 1,
domain users bring new problems and interface with an
FCUBE Server to generate massive data-parallel ensembles.
The FCUBE deployment server launches a number of cloud
nodes with a variety of learners executed with different algo-
rithm parameters. Nodes sample data randomly from the data
server. Once learning is finished each learner provides the
model back to the FCUBE server. The server then learns a
meta-model (fused) using portion of data set aside for this, vali-
dates the model and outputs the final model to the domain
user. The repository of learners is composed of the algorithms
contributed by machine learning researchers.

A. FCUBE Components
1)		�Learners: FCUBE deploys

stand-alone learners compli-
ant with an input/output
specification.

2)		�FCUBE image: A cloud
image or snapshot contains
all the learner executables
and the logic that instantiates
a learner.

3)		�FCUBE Server: An FCUBE
server is responsible for
deploying FCUBE instances,
retrieving models, fusing mod-
els, and evaluating the resulting
meta-model. The server can be
instantiated from a publicly
available software repository.

Cloud

Factor

Model Run

Domain
User

New
Problem

Data
Server

Dataset
Dataset 1 Dataset 2 Dataset 3

Filter

Fuse

FCUBE
Server

FCUBE
Instances

FCUBE
Image

FCUBE Learners

New
Learner

ML
Researcher

Figure 1 FCUBE commons’ typical use case.

february 2015 | IEEE Computational intelligence magazine 23

4)	FCUBE Data Server: Data are stored in a
remote storage accessible from FCUBE
instances. Several architectural solutions
are viable. The EC2 version of FCUBE
uses Amazon’s Simple Storage Service
(S3). S3 is scalable both in size and
throughput, eliminating the bottleneck
introduced by the usage of traditional dis-
tributed file systems like NFS1. Additionally, S3 on Amazon
AWS provides a drag-and-drop interface enabling external
users to easily upload new datasets.

B. FCUBE Setup
Given a dataset ,D before deployment we generate the splits

, ..., , ,D D Dtr tr fn1 and ,Dte corresponding to training splits,
fusion data, and test data respectively. The learners executed in
the same run access the training splits stored on the data server.
Splitting the training data reduces the network traffic (and
therefore the cost) of data transfers from the data server to the
FCUBE instances. The data employed for fusion training ,D f^ h
and for testing Dte^ h is accessed by the FCUBE server.

C. Deployment Sequence
The user only needs to interface with the FCUBE server. Four
arguments need to be provided, namely number of FCUBE
instances, learner name(s), duration of the learning process, and
the parameter options file (see [5]). The deployment sequence
depicted in Fig. 2a then takes place, but is hidden to the user.
1)	The server wakes up the instances in batches and waits

until the instances respond.
2)	The server broadcasts the parameter options file to the instances.
3)	The server remotely triggers FCUBE’s factoring function-

ality and the execution of a learner.
4)	At each instance, the FCUBE factoring service generates

both a sample of the data and set of parameters.
5)	The resulting factored data and factored parameters are passed

as arguments to the specified learner and the learning pro-
cess starts.

Once all the FCUBE instances have finished learning, the
sequence depicted in Fig. 2b takes place.
1)	The server retrieves the final model generated at each node.
2)	The server employs three processes: model output calculation,

filtering and fusion (see Section V).
Running on-demand instances introduces a delay in the exe-
cution since instances need to be booted up. We have observed
that the time necessary to raise these instances varies greatly
from a cloud environment to another. In particular CSAIL’s
OpenStack-based private cloud for development is far slower
than Amazon EC2. In the latter, raising 100 instances in batches
of 25 takes approximately 15 minutes. On the other hand,
broadcasting the parameter options file to all the instances does

1The development version of FCUBE used in our OpenStack private cloud em-
ploys a dedicated NFS volume to store the data. While this solution is straight-
forward, in practice it limits the scalability of our system. In fact, we have expe-
rienced contention issues when many running instances try to mount and access
the NFS volume concurrently.

not introduce any significant delay, since the size of the trans-
ferred file is at most a few kilobytes. The proposed architecture
is highly scalable since the factoring and the majority of the
learning process take place at the instances, and therefore is
executed in parallel.

V. Fcube: Factor, Filter, Fuse
In this section we provide the detailed description of FCUBE’s
factoring, filtering, and fusion. We use the following notation:

Notation: X Xn1 "f explanatory variables, Pi " empirical
prior for class , costi Cij " of declaring class i when it is class
,j Pij " probability of declaring class i given class ,j R " Bayes-

ian risk function , .C P i j,i j ij ij# 6 !R=

A. Factoring as a Service
Factoring is what we call the generation of multiple learners
each with its own subset of data, explanatory variables, and
parameters. This process is governed by the parameters options
(see example in Table 1).

(a)

(b)

FCUBE Server Data ServerFCUBE Instance

Up

Send Param Options

Received

Factor and Train

Data

Data Request

FCUBE-Deploy

Wake Instance

FCUBE-Factor

Learner-Train
Training

Data ServerFCUBE Instance

Model

FCUBE-Filter-Fuse

FCUBE-Retrieve
Get Model

Model

FCUBE-Filter-Fuse

FCUBE-Retrieve
Get Model

FCUBE Server

Figure 2 FCUBE flow: (a) deployment sequence and (b) model
retrieval and fusion sequence.

FCUBE exemplifies what we call a Bring Your Own
Learner model. It creates a commons where machine
learning researchers add their stand-alone methods to
the framework in a plug-and-play manner.

24 IEEE Computational intelligence magazine | february 2015

Data factoring: The parameters options file provides the
path to the remote data storage directory (NFS or S3 bucket
name) where the training data are stored. FCUBE’s factoring
service randomly picks one training split and transfers it to the
instance storage. Then, a stochastic sampling process takes place
where both exemplars and explanatory variables are factored
according to the data_sample_rate and variable_sample_rate
parameters. The first specifies the ratio of exemplars that will be
sampled from the data, while the second specifies the ratio of
the explanatory variables. It is important to note that we keep
track of the variables used for training in each of the instances.
This information will be necessary later to evaluate the gener-
ated models on unseen data.

Parameter factoring: The user decides what parameters
will be factored (parameters for which a value will be sampled
stochastically from the possible ranges/choices) and what
parameters will be set to their default value. As mentioned in the
previous section each FCUBE instance has built-in factoring
functionality that will parse the parameters options file and gener-
ate a configuration (properties) file for the learner during the
deployment phase.

For further details and examples of data and parameter fac-
toring, the reader is referred to FCUBE’s website2.

B. Filtering and Fusion
Once each node on the cloud has finished learning, the final
model generated at each node is retrieved and used to build a
meta-model. While data parallel approaches avoid the complexity
of synchronization during the learning process, the fusion step is
not without its own set of challenges. FCUBE provides a means
of learning a fused model in the models’ output space, that is, pre-
dicted labels. To this end, the following three processes take place at
the FCUBE server: models’ output calculation, filtering and fusion.

1) Calculate the models’ outputs: In this step, we calculate the
outputs (predicted labels) of the models retrieved from the
FCUBE run when evaluated on the split set aside for fusion
training .D f To evaluate a model on unseen data, two steps
are necessary.

2http://f lexgp.github.io/FCUBE

1)	 First, we need to trim D f such
that the variables used for model
evaluation match the variables
used for training. To perform this
operation, the information logged
during the data factoring process is
retrieved and the variables of D f
are sampled accordingly. Note
that, although this process intro-
duces a computational overhead,
it also eliminates the need to
impose variable labels or identifi-
ers, and thus provides higher flex-
ibility for the integration of
learners in the system.

2)	Once the data have been processed, the model is evaluated.
As a result, we obtain a prediction or label for each exem-
plar in .D f

This process is repeated for all the models retrieved from the
FCUBE instances. Once all the models have been evaluated,
the result is the matrix of model outputs L f of n rows and
p 1+ columns, where n is the number of exemplars in D f
and p is the number of models retrieved from the FCUBE
run. The ()p 1+ -th column corresponds to the true labels and
is identical to the last column of .D f

2) Filtering: The filtering process consists of discarding the
models that have a performance lower than a pre-set baseline.
The baseline performance for classification corresponds to the
cost incurred by a naive classifier that always predicts the
majority class:

	
baseline , if

baseline , if

C P P

C P P

>

<

01 1 0

10 1 0

=

=
) � (1)

The split D f set apart for fusion training is used to assess
the cost (empirical Bayesian risk) of each classifier. Note that D f
is unseen by the learner during training. The cost is computed
as a weighted sum of the false positive and false negative rates:

	 tcos C P C P01 01 10 10= + � (2)

All the classifiers exhibiting a lower cost than the baseline are
used to build a meta model via training.

3) Fusion or Learning a meta-model: Fusion is the final step of
the FCUBE flow. It generates a fused model and its test set
performance metrics. Most classification approaches rely on
majority vote. Using the majority vote has a major drawback: it
does not weight the individual models’ accuracies or the correla-
tions between models. Our fusion method implicitly enables us
to consider the performance of individual classifiers and the
dependence between the classifiers. We proceed as follows:

Step 1: train the meta-model: We run logistic regression
on the matrix of model outputs ,L f thus obtaining the meta-
model .i

Step 2: model evaluation on test data: We evaluate the
filtered models on the testing set .Dte As a result, we obtain

Table 1 Parameters options file: an example of data factoring and parameter factoring
configuration. For each exposed parameter, a default value and a range of choices can be specified.

Parameter Type Choice type Default Choices
Data Factoring Data String fixed fcube/train

_folder
—

Data sample rate float discrete 0.1 {0.1, 0.2}
Variable
sample rate

float discrete 1.0 {0.5, 0.75, 1}

Parameter
Factoring

False negative
weight

float range 0.5 [0.4:0.01:0.6]

Mutation rate float range 0.1 [0.05:0.05:0.2]

Crossover rate float range 0.7 [0.5:0.05:0.85]

Population size int discrete 1000 {1000, 5000}

Tournament size int discrete 2 {2, 7, 10}

february 2015 | IEEE Computational intelligence magazine 25

matrix of model outputs Lte (one row for each exemplar in
Dte and one column for each filtered classifier).

Step 3: applying the meta-model: We apply the meta-
model i to Lte and report its performance metrics.

VI. A Repository of Algorithms
for Collaborative Learning

A. Bring Your Own Learner
FCUBE enables machine learning researchers to incorporate
their stand-alone algorithms in the framework. To ease this
process and incur minimal overhead on their part, we treat
learning algorithms as black boxes totally decoupled from the
code of the framework. Learners must, however, be compliant
with a standardized specification, i.e. a predetermined list of
input parameters and expected outputs. Learners need to pro-
vide functionality to accomplish two use cases: train and pre-
dict. These two interfaces are depicted in Fig. 3. In the first
case, learners take as inputs a path to a dataset, the duration of
the learning process, and a properties file containing any addi-
tional parameters (see [5] for details) and output a file con-
taining exactly one model. The developer of the learner
chooses the format of the output model file. Regarding the
predict use case, we expect to obtain a file containing predic-
tions given a data path, a model file, and the destination path
for the predictions.

B. A Collaborative Platform for Learning
One of the appealing aspects of this platform is that it provides a
scaling service to algorithm developers that might not have the
infrastructure necessary to tackle large-scale problems. Another
positive aspect is that it allows learner comparison on the basis
of a fixed computational budget. However, the final goal of this
project goes beyond that of providing a framework where col-
laborators can deploy their algorithms. Instead, we aim at unit-
ing the efforts of worldwide developers of innovative learning
algorithms to solve relevant problems of public domain.

With this idea in mind, we organized a collaborative Big
Learning activity around FCUBE. The activity was part of the
first edition of the EC for Big Data and Big Learning work-
shop held at GECCO 2014 [12]. Its call for participants
invited collaborators to join a
community that would solve
large-scale problems of public
interest with FCUBE. We
received four learning algo-
rithms from external collabora-
tors. These algorithms were suc-
cessfully added to the platform;
over time, we expect the popu-
lation of learners to keep
increasing. The massive deploy-
ment of these learners with
FCUBE enabled us to solve two
problems based on large-scale

datasets. Moreover, we showed that, by fusing the predictions
of diverse algorithms, we can obtain better performance than
that of individual algorithms alone. This evidence should con-
vince others in the machine learning community to contrib-
ute their efforts. We hoped that the workshop would retro-
spectively become regarded as the kickstart toward an
automatic collaborative means of solving new problems.

The key to the success of this initiative was that both the
workload of collaborators and their interaction with the
FCUBE team (a team within the ALFA group at MIT) was
minimal. We restricted the role of collaborators to only adapt
their learners FCUBE’s standardized input/output specification
(Fig. 3). The FCUBE team integrated the learners in the
framework, performed all the factor, filter, fuse process and pro-
vided performance metrics. This is Deployment as a Service
(DaaS) and is depicted in Fig. 4. Further details about the col-
laborative learning activity can be found in [12].

The activity allowed us to populate the repository of learn-
ers with the contributions from participants. In a future step,
we will make a call for researchers of different domains to
“bring their problem and dataset” and use FCUBE’s learners to
perform large-scale learning tasks. Researchers will greatly
benefit from a learner factoring framework which gives them
access to publicly available learners. They will be able to easily

(a)

Data_Path

Duration

Properties

Learner Model

Data_Path

Model

Predictions_Path

Learner

Predictions

(b)

Figure 3 Learner black box specification for the (a) train use case
and (b) predict use case.

Your Learner

You ALFA
FCUBE

Factor

Filter

Fuse

Fused
Model

Cloud

Cloud Nodes
with Your Learner

Figure 4 Collaborative Big Learning Activity taking place within the first edition of the EC for Big Data
and Big Learning workshop, GECCO 2014. Participants simply provide stand-alone executables of their learners.

26 IEEE Computational intelligence magazine | february 2015

solve their problem by broadly exploring supervised machine
learning algorithms. FCUBE provides them with a means of
using the cloud’s scalable and budget-flexible resources to meet
a short term deadline or to speed up the process of obtaining a
baseline result for their new problem.

C. Learning Algorithms
In this paper, we demonstrate the framework with five learners
that are meant to be representative of the wide variety of learn-
ers existing in the EC community. Three of them, namely Rule
List, Rule Tree, and GP Function, have been developed by the
FCUBE team. Rule List and Rule Tree employ respectively a
Genetic Algorithm and Genetic Programming to learn a rule-
based classifier. On the other hand, GP Function performs a
search in the space of discriminant functions with Genetic Pro-
gramming. The remaining two algorithms were provided by
external collaborators who kindly shared their software to test
our framework before the learning activity period. In the fol-
lowing, we present these five learning algorithms.

1) Rule List Classifier: The Rule List classifier implements a
Genetic Algorithm to search in the space of binary classifiers.
Candidate solutions are lists containing one condition or rule
for each explanatory variable of the problem.

Representation and Initial Population: Individuals are
defined by the tuple { , , }I R A S= where

❏❏ R is a list containing one rule for each explanatory variable
of the problem. Each rule is written as x ci i# or x c>i i
where ci is a constant and is in the range [,] .c x xmin max

i i i!

❏❏ A is a boolean vector such that the thi position determines
whether or not the thi rule is applied to .xi

❏❏ S is a strategy in { , , }DNF CNF MV used to combine the
outcomes of the active rules in the candidate solution.
DNF, CNF, and MV stand for disjunctive normal form, con-

junctive normal form, and majority vote.
Each individual of the initial population is created as follows:

1)	 For each variable ,xi we choose randomly a value ci from
the interval [,]x xmin max

i i and a relational operator in { , }< >
to build the initial condition x c<i i or .x c>i i Then, we flip
a coin to decide if the thi rule is active.

2)	We select randomly one of three possible strategies, namely
disjunctive, conjunctive normal form, or majority vote.
Evaluation: The prediction issued by a given individual

depends on its voting strategy. In the CNF case, all the active rules
need to be satisfied to emit a positive prediction. The majority vote
strategy defines that at least half of the active conditions need to be
satisfied to predict a positive class. Finally, a single satisfied condi-
tion triggers a positive prediction in the DNF case. We evaluate the
individual for each exemplar of the dataset and compute its fitness
as the Bayesian Risk introduced in (2).

2) Rule Tree Classifier: The training process of the Rule Tree
classifier is divided into two steps. In a preprocessing step, a set of
conditions in the form of a x bi# # are determined for each
explanatory variable. In the second step, a Genetic Program-
ming strategy is adopted to search in the space of boolean rules
using the generated conditions as leaves of the GP trees.

Preprocessing Step: The conditions for each explanatory
variable of the problem are obtained independently. Given a
variable ,x we proceed as follows:
1)	The probability density function of the variable when con-

ditioned on the two classes is estimated via nonparametric
Kernel Density Estimation (KDE). Given a variable x and
a class ,H j the probability density function of the distribu-
tion (|)p x H j at a point y is estimated as follows:

	 () (())
()

f y n K y x i nh K h
y x i1 1

H h
i

n

j
i

n
j

1 1
j = - =

-

= =

t c m/ / � (3)

�where x j is the subset of values of x with label H j and n
is the size of .x j We employ the Gaussian basis function

()K u e1 2 u
2
1 2

r= -` j and set the bandwidth parameter h to

� . ,n n4 3 1 065 5
1

5
1

-v v
-t t` j where vt is the standard deviation

of .x j

2)	We then discretize the range of values of the variable x
into m equal partitions and compute ()f xH0

t and ()f xH1
t at

each of the m steps.
3)	As depicted in Fig. 5a, a new condition in the form

a x b# # is created every time the estimated density
functions ()f xH0

t and ()f xH1
t cross each other.

C1 C2 C3 C4

fH1(x) fH0(x)

X1

C5 C6 C7

X2

fH1(x)

fH0(x)

(a)

or or

or

or
or not not not

not

not

notC2 C5 C4

C4

C4

C5

C5

C1

C1

C1

and

and

(b)

Figure 5 Rule Tree Classifier: preprocessing step and representation.
(a) Obtaining the conditions for variables x1 and .x2 In this example,
four conditions (, , ,)c c c c1 2 3 4 are retrieved for the first variable while
the analysis of the second variable results in the three conditions

, , .c c c5 6 7 (b) Examples of boolean rules coded with GP trees.

february 2015 | IEEE Computational intelligence magazine 27

At the end of the preprocessing, we obtain a set of conditions
{ , , ..., },C c c ck1 2= where each condition refers to a unique

interval for one of the explanatory variables.
Representation and Initial Population: As illustrated in

Fig. 5b, candidate solutions are Boolean expressions built with
the set of operators { , , } .and or not These expressions are coded
as GP trees where the leaves correspond to the conditions

{ , , ..., }C c c ck1 2= retrieved in the preprocessing step. The popu-
lation is initialized with a ramped half-and-half strategy.

Evaluation: The implemented multi-objective approach is
based on Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II) [13] and targets both performance and complexity.
Classifier performance is calculated by evaluating (2). The com-
plexity measure employed is the Subtree Complexity intro-
duced in [14].

3) GP Function Classifier: The third binary classifier, first pre-
sented in [15], also implements a multi-objective Genetic Pro-
gramming strategy based on NSGA-II. Given a set of explana-
tory variables ,X- we search for a nonlinear function ()y f X= r
such the distributions (()|)p f X H0r and (()|)p f X H1r are best
separated. After learning the function, a threshold m is used to
build the decision rule

	
, if

, if
L

y

y

1

0 <
i

i

i

$ m

m
=t) 3�

that determines whether a given output represents a class 0 or
class 1 prediction. This approach is
graphically depicted in Fig. 6a.

Representation and Initial
Population: As in the Rule-
Tree classifier, individuals are
coded with GP trees and the
population is initialized with a
ramped half-and-half strategy.
However, in this case the leaves
of the trees are variables of the
problem and individuals are
numerical expressions built with
the following set of operators:

ops exp, square, cube, sqrt
, ,/, , sin, cos, log,)

=
+ -' 1

�
�

(4)

Evaluation: Since the goal is
to find the model with the high-
est discriminatory power between
the two classes, the area under the
ROC curve is used as fitness
function to guide the search.
Simultaneously, we minimize the
complexity of the models to pre-
vent bloating issues. Here in we
present the steps involved in eval-
uating the fitness function.

Area under the ROC Curve: To compute the area
under the ROC curve, we evaluate the model for each
exemplar i of the dataset and vary the threshold m in the
decision rule

, if

, if
.L

y

y

1

0 <
i

i

i

$ m

m
=t) 3

We then evaluate the two errors for each threshold and com-
pute the model’s area under the ROC curve. We proceed as
follows:
1)	Evaluate the GP tree on the training exemplars resulting

in .y n1f

2)	Retrieve the ymax and ymin values for the model outputs
.y n1f

3)	Normalize the outputs of the model with the obtained
boundaries.

4)	Vary the threshold [;]0 1!m and apply the decision rule
as above.

5)	Obtain the False Positive and True Positive rates for each
value of m

6)	Compute the area under the ROC curve with the
obtained rates.
Complexity: As in the Rule Tree classifier, we employ the

Subtree Complexity measure.
Threshold selection: The last step consists in identify-

ing the threshold m for the best model ()f Xr such that the
decision rule

Class 1 Class 2 Class 2 Class 1

X1 Xn f(X)

Class 1 Class 2

Search f(X)
Such That

Moving Threshold ROC Curve

TP
Rate

FP Ratem0 m1 m2 m3 m4 m5 m6

Class 1 Class 2

0 1f(X)

Class 1 Class 2

Cost FunctionEval Functionlog sin

+

+

exp

X4
X1

X5

Class 1 Class 2
Moving ThresholdBest Model Final Threshold

0 1f(X) 0 1f(X)

(a)

(b)

(c)

Threshold

Figure 6 GP Function classifier: (a) search for the nonlinear function ()f Xr such the distributions
(() |)p f X H0r and (() |)p f X H1r are best separated. (b) GP Function evaluation: a moving threshold is used

to compute the area under the ROC curve. (c) Threshold selection for the final model.

28 IEEE Computational intelligence magazine | february 2015

	
, if

, if
L

y

y

1

0 <
i

i

i

$ m

m
=t) 3�

minimizes the weighted sum of the false positive and false neg-
ative rates as in Eq.(2). This is achieved by performing a grid
search over .m This process is carried out post-hoc after the
classifier is trained.

4) Memetic Pittsburgh Learning Classifier System: Memetic
Pittsburgh Learning Classifier System (MPLCS) is a learning
algorithm based on the GAssist Pittsburgh Learning Classifier
System. MPLCS evolves variable-length rule sets. This version
of the algorithm incorporates a variety of efficiency enhance-
ment mechanisms. In particular, the algorithm implements a
memetic multi-parent crossover operator. The reader can find
extensive documentation of this algorithm in [16]–[18].

5) Symbiotic Bid-Based Genetic Programming: Symbiotic Bid-
Based Genetic Programming (SBB) is a learning algorithm
that co-evolves a classifier population and a population of
exemplars. Classifiers are grouped into teams (ensembles) that
emit predictions according to a sophisticated bidding strategy.
For an extensive description of this algorithm, the reader is
referred to [19]–[22].

VII. Experimental Work

A. Higgs Dataset
We present our results on the Higgs dataset [23]. The Higgs
dataset is a recently released binary classification problem
with 11 million exemplars generated via Monte Carlo simu-
lations. The goal is to differentiate cases where the Higgs
boson is produced and cases corresponding to a background
process. It contains 28 features, where the first 21 are kine-
matic properties measured by the particle detectors in the
accelerator. The last seven features are higher level features
proposed by domain experts, and are functions of the first 21.
As in [23], the last 500,000 exemplars ()Dte are used for test-
ing. The training set ()Dtr is in turn split into 10 folds such
that the class balance is maintained. The first nine splits

, ...,D Dtr tr1 9 are allocated in the Data Server and are accessed
from the FCUBE instances and used for learning. The 10th
split ()D f must be available from the FCUBE server and is
used for filtering and training the meta-model (fusion).
Finally, the testing set Dte is used to test the performance of
the retrieved meta-model. The characteristics of these splits
are summarized in Table 2.

B. Massive Data-Parallel Evolutionary Learning
We design the ensemble configuration of the FCUBE runs in
the same way the participants of the collaborative activity pro-
ceeded. First, we assign a fixed computation budget to each of
the learners, Rule List (RL), Rule Tree (RT), GP Function
(GPF), Multiple Parents Pittsburgh Learning Classifier System
(MPLCS), and Symbiotic Bid- Based Genetic Programming
(SBBJ). In this case, each learner is assigned $20 on Amazon
EC2. Then, we choose a data and parameter factoring strategy and a
combination of number of instances, flavor, and running time that
fits into the budget:

❏❏ Data and parameter factoring strategy: Each of the deployed
instances uses FCUBE’s factoring service to generate a 1%
split of the training data (105,000 exemplars) to learn from
it. Note that all the explanatory variables of the problem are
considered at each instance. When required as a parameter,
the weight of false negative errors is set to 0.47 according to
the class balance of the problem. The rest of the parameters
of the learners are set to their default values.

❏❏ Number of instances: We deploy in parallel 100 instances of
each of the five integrated learners: RL, RT, GPF, MPLCS,
and SBBJ. As a result, we obtain 100 classifiers per algo-
rithm, each trained with a different 1% of the data. With this
strategy, we expect to cover a significant part of the training
data in the learning process.

❏❏ Flavor: The flavor corresponds to the specifications of the
virtual machines used in the cloud runs. The more comput-
ing power the virtual machine has, the more expensive it is.
However, the price of the flavor does not increase linearly
with the specifications of the virtual machine. In other
words, virtual machines with higher computational power
present a better compute/cost trade-off. With this idea in
mind, we exploit the evaluation level parallelism of the
learners Rule List, Rule Tree, and GP Function by execut-
ing them in a 4-threaded fashion. In accordance with this
setup, we employ the compute-optimized c3.xlarge flavor
that counts 4 virtual CPUs. The remaining learners,
MPLCS and SBBJ, run in a single-threaded fashion. There-
fore, we employ the cheaper single-core m3.medium flavor
($0.070 per Hour).

❏❏ Running time: The running time is set according to the two
previous parameters and the established budget. The $20
budget allows to run 100 learners executed with the
c3.xlarge flavor ($0.210 per instance per hour) for 57 minutes
while learners using the m3.medium flavor ($0.070 per
instance per hour) will run for 171 minutes.

The configuration of the runs is summarized in
Table 3: a total of 500 learning algorithms are exe-
cuted, and a total of 1,800 CPU hours have been nec-
essary to generate the results presented in this paper.

C. Performance of Individual Learners
FCUBE exploits rapidly trained but weak classifiers
with diverse behaviors to produce robust ensembles. As
a first analysis of this diversity, we present in Fig. 7 the

Table 2 Characteristics of the Higgs dataset and of the generated splits.

D D...tr tr1 9 Df Dte Total

Exemplars 1,050,000 1,050,000 500,000 11,000,000
Features 28 28 28 28
Negative exemplars 47% 47% 47% 47%
Positive exemplars 53% 53% 53% 53%
function training fusion train testing —
accessed by FCUBE instances FCUBE Server —

february 2015 | IEEE Computational intelligence magazine 29

false positive rate and the
true positive rate of all the
classifiers generated with
the five learners. Two
important observations are
worth commenting. First,
MPLCS and SBBJ generate
classifiers covering a wide
section of the TPR/FPR
trade-off. On the other
hand, RL, RT, and GPF are,
broadly speaking, special-
ized in some region of the
front. This is explained by
the fact that RL, RT, and
GPF receive the cost of the
two errors as parameters of
the learning process. As a result, the models generated by these
algorithms are concentrated in the region of the trade-off that
minimizes the established cost. Second, it is interesting to see that
all the regions of the trade-off are covered by one or another
learner. The Rule Tree learner is however clearly dominated by
the other learners, and thus is not likely to contribute to build a
collaborative solution. This analysis confirms that EC-based
learners generate classifiers that exhibit a remarkable diversity.

To compare the performance of the different learners, we
analyze the cost (Bayesian Risk) of the individual classifiers as
in (2). The weight of the two errors is set according to the class
balance of the problem with the goal of penalizing classifiers
that do not perform well on the minority class. Thus, in this
case, we set the weights of the false positive and false negative
rates to 0.53 and 0.47 respectively. This analysis is useful to
determine, for the considered problem, what are the most
appropriate learners to use. Fig. 8a shows the testing set cost for
the five different learners. Additionally, we plot the cost of a
naive classifier that always predicts the majority class. Note that

classifiers exhibiting a cost higher than the baseline with
respect to the fusion set D f have been discarded during the fil-
tering process. We can see that all the learners improve on the
baseline cost. GP Function learner generates classifiers that out-
perform those generated with Rule Tree and Rule List. SBBJ
and MPLCS generate classifiers that cover a wide range of val-
ues, it is therefore hard to compare them against the other
learners. The next step of the analysis consists in determining
whether the observed diversity helps building ensembles that
will improve the accuracy of the independent classifiers.

Table 3 Configuration and cost of the five ensemble strategies deployed on Amazon EC2 with FCUBE.

Learner Rule List Rule Tree GPF MPLCS SBBJ Total

Factoring
Configuration

Data sample
rate

1% 1% 1% 1% 1% —

Variable
sample rate

100% 100% 100% 100% 100% —

False negative
weight

0.47 0.47 0.47 — — —

Ensemble
Configuration

Budget $20 $20 $20 $20 $20 $100

Instances 100 100 100 100 100 500
Flavor c3.xlarge c3.xlarge c3.xlarge m3.medium m3.medium —
Virtual CPUs 4 4 4 1 1 —
Cost per hour $0.210 $0.210 $0.210 $0.070 $0.070 —
Time (min) 57 57 57 171 171 —
Virtual CPU
hours

4 # 100 4 # 100 4 # 100 3 # 100 3 # 100 1800

Tr
ue

 P
os

iti
ve

 R
at

e

1

1

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2
0

0
False Positive Rate

Rule List
Rule Tree
GP Funtion
MPLCS
SBBJ

Figure 7 Trade-off between false positive rate and true positive rate
of the 500 classifiers evaluated on the test set. We train 100 classifi-
ers with each of the five learners integrated in the framework.

C
os

t

0.55

0.50

0.45

0.40

0.35

0.30

0.25
Rule
List

Rule
Tree

GP
Function

(a)

MPLCS SBBJ

C
os

t

0.55

0.50

0.45

0.40

0.35

0.30

0.25

(b)

RL-
10

0

RT-1
00

GPF-
10

0

M
PLC

S-1
00

SBBJ-
10

0

ALL
-5

00

Best
of Run

Majority
Vote

Logistic
Regression

Figure 8 Cost or Bayesian Risk of (a) individual classifiers and (b)
best model of the run and fused models obtained with Majority Vote
and Logistic Regression. In all cases lower is better.

30 IEEE Computational intelligence magazine | february 2015

D. Performance of the Fused Models
For each learner, we build a meta-model that combines
the predictions of the 100 models retr ieved from the
FCUBE run. Additionally, we obtain a fused model that
combines all 500 models, i.e. that combines models
obtained with all five learners. We employ two different
methods for the fusion process: majority vote and logistic
regression (see Section V-B).

The cost of the meta-models obtained with majority vote
and logistic regression are reported in Table 4 and shown in
Fig. 8b. Note that logistic regression provides a probability for
each test case. We apply the decision rule

	
, if .

, if .
L

y

y

1 0 5

0 0 5<
i

i

i

$
=t) 3�

to determine whether a class 0 or class 1 prediction is emitted.
For comparative purposes, we also show the cost of the best
classifier of the run. Majority vote does not provide any benefit
with respect to the best model of the run. On the other hand,
the logistic regression fusion technique systematically reduces
the cost of the best classifier of the run. This effect is remark-
able in the case of MPLCS-100 and SBBJ-100 fused models
since they are now as competitive as GPF-100. Training multi-
algorithm ensembles is shown to be beneficial since the ALL-
500 meta-model outperforms all the strategies. This verifies the
hypothesis of the need of diversity and is an encouraging result
to promote the growth of our repository of learners.

We compute the area under the curve (AUC) of the fused
model trained via Logistic Regression. To this end, we employ
a moving threshold m in the decision rule

	
, if

, if
,L

y

y

1

0 <
i

i

i

$ m

m
=t) 3 �

where yi is the probability vector returned by the logistic regres-
sion algorithm. The obtained AUC is compared against the per-
formance of Boosted Decision Trees (BDT), Neural Networks
(NN), and Deep Neural Networks (DNN) reported in [23]. It is
important to note that this comparison might not be accurate
for BDT because precise details of the AUC calculation were not

provided. Moreover, [23] does not specify the time
required to train the classifiers. This comparative analysis
is shown in Table 5. Within the methods tested in this
work, the best AUC is achieved by the ensemble com-
posed of all 500 classifiers (i.e., ALL-500). The strategies
GPF-100, MPLCS-100, and SBBJ-100 present a similar
AUC, and clearly outperform RL-100 and RT-100.
When compared to the results presented in the cited
work, we can see that our ensemble methods are inferior

yet competitive against Boosted Decision Trees and Neural Net-
works. However, our results are clearly outperformed by Deep
Neural Networks. The results presented in this work are none-
theless encouraging since we aimed at fast learning times:
approximately one hour in the case of RL-100, RT-100, and
GPF-100 and nearly three hours (with less computational capa-
bility) for MPLCS-100 and SBBJ-100. Moreover, the learners
tested in these experiments are run with their default parameters,
i.e. they have not been fine-tuned for the targeted problem.

E. Analysis of the Diversity of the
Different Learning Algorithms
In the previous analysis, we have verified that considering dif-
ferent learning algorithms provides better accuracy. We now
perform a deeper analysis of the predictions of the different
models with the goal of determining which algorithms are
complementary, in the sense that they produce classifiers that
are competitive and yet emit dissimilar predictions. This infor-
mation is extremely valuable since it will allow appropriate
combinations of learners to be selected when new problems
are fed into the framework.

We first analyze the correlation between classifiers. Fig. 9a
shows the pairwise correlation coefficient t for all the 500
classifiers. This metric has been widely used to assess the diver-
sity of ensemble classifiers [24] and takes into account the four
possible combinations of hit/miss given two classifiers yi and

.y j The coefficient ,i jt is computed as follows:

	
() () () ()N N N N N N N N

N N N N
,i j 11 10 01 00 11 01 10 00

11 00 01 10

t =
+ + + +

- �(5)

where
❏❏ �N 11 is the number of examples classified correctly by both
classifiers,

❏❏ �N 10 is the number of examples classified correctly by yi
but incorrectly by ,y j

❏❏ �N 01 is the number of examples classified incorrectly by yi
and correctly by ,y j

❏❏ �N 00 is the number of examples misclassified by both yi and .y j

Classifiers that tend to rec-
ognize the same exemplars
are cor related, and thus
depicted in yellow and red
(positive values). On the other
hand, negative values indicate
that the two classifiers tend to

Table 4 Cost or Bayesian Risk of the best model of the run
and fused models obtained with Majority Vote and Logistic Regression.
Lower is better.

Method RL-100 RT-100 GPF-100 MPLCS-100 SBBJ-100 ALL-500

Best of Run 0.395 0.400 0.315 0.330 0.356 —
MV 0.428 0.397 0.317 0.405 0.405 0.3274
Log Reg 0.346 0.378 0.311 0.312 0.318 0.292

Table 5 Area under the curve of the methods reported in [23] (BDT, NN, and DN) and of the
ensembles generated with the different evolutionary learners and fused with logistic regression
(RL-100, RT-100, GPF-100, MPLCS-100, SBBJ-100, and ALL-500).

Method BDT [23] NN [23] DNN [23] RL-100 RT-100 GPF-100 MPLCS-100 SBBJ-100 ALL-500

AUC 0.810 0.816 0.885 0.697 0.670 0.746 0.751 0.747 0.779

february 2015 | IEEE Computational intelligence magazine 31

miss on different exemplars. It is
possible to identify squared
areas, each corresponding to 100
classifiers generated with the
five different learners. The
squared areas confirm the diver-
sity obtained with different
learners, even if the final accu-
racy of the trained classifiers is
similar. As opposed to MPLCS
and SBBJ, which present a high
diversity, RL and GPF do not
exhibit a great variance within
their 100 classifiers. In these
cases, it is not necessary to run
many copies of the algorithm.
However, it is also possible that
the Higgs dataset does not pres-
ent a high variance and, as a result, the retrieved classifiers are
similar even when they are trained with only 1% of the data.

When we compare the correlation across learners, we
observe that both RL and RT generate classifiers that are uncor-
related with the rest. This might be due to the fact that their per-
formance is lower, and therefore we will exclude them going
forward. GPF and SBBJ generate correlated classifiers, and thus
should not be used together to generate ensembles. On the other
hand, MPLCS seems to be different both from GPF and SBBJ,
and thus is a solid candidate for multi-algorithm ensembles.

We introduce a different measure that allows us to quantify
how complementary the pairs of classifiers are. We define comple-
mentarity as the ratio between the number of exemplars on which

at least one of the classifiers is correct to the total number of
exemplars. In other words, this measure represents the accuracy of
the combined prediction of two classifiers given an ideal fusion
method. This measure is given by:

	 complementarity
N N N N

N N N
,i j 11 10 01 00

01 10 11

=
+ + +
+ + � (6)

The results of this analysis are shown in Fig. 9b. While RL
exhibits a poor performance, its combinations with MPLCS
and SBBJ seem to be promising. However, it is due to the fact
that some of those classifiers tend to predict the majority class
despite balanced data. This makes them unsuitable for fusion.

-1 -0.5 0 0.5 1

RL

RT

GPF

MPLCS

SBBJ

RL RT GPF

(a)

MPLCS SBBJ

0.5 0.6 0.7 0.8 0.9 1

RL

RT

GPF

MPLCS

SBBJ

RL RT GPF

(b)

MPLCS SBBJ

Figure 9 Analysis of the diversity of the classifier ensembles. (a) Pairwise correlation coefficient t between the 500 classifiers: positive values
(yellow and red) indicate correlated predictions. (b) Pairwise complementarity of the 500 classifiers: close to red colors indicate that at least one
of the classifiers of the pair tends to make the right prediction.

RL-100

RT-100

GPF-100

MPLCS-100

SBBJ-100

RL-
10

0

RT-1
00

GPF-
10

0

M
PLC

S-1
00

SBBJ-
10

0
0.5

0.6

0.7

0.8

0.9

1

Figure 10 Correlation matrix of the five ensembles fused with logistic regression.

32 IEEE Computational intelligence magazine | february 2015

Therefore, we continue with only the top learners, i.e. GPF,
MPLCS, and SBBJ. It is very interesting to observe that some
combinations of GPF and MPLCS classifiers have a great
potential, reaching values of up to 0.92.

We now study the similarities of the predictions of the five
fused models, each built with models obtained with a single
learning algorithm. In this case, we employ the probabilities
returned by the logistic regression process rather than the pre-
dictions or labels. Since these probabilities are continuous val-
ues, we can generate the 5 # 5 correlation matrix, where each
row corresponds to one of the five learners. The patterns
observed in the analysis of individuals classifiers also take place
in this case. We can see that RL-100 and RT-100 are highly
uncorrelated with the other methods. SBBJ-100 is correlated
to both GPF-100 and MPLCS-100. However, as observed in
previous results, the correlation between GPF-100 and SBBJ-
100 is lower, thus confirming the great potential of combining
these two learners.

VIII. Conclusion
We have introduced FCUBE, a machine learning framework
that harnesses cloud computing to solve largescale supervised
learning problems via massive ensemble learning. It exploits the
enhanced software transferability provided by virtualized cloud
resources to automate the use of learning algorithms developed
within the Evolutionary Computation community. The frame-
work interfaces are carefully designed to enable machine learn-
ing researchers to easily import their learners and benefit from
a massive data-parallel deployment of their algorithm with
minimal overhead on their part. We refer to this concept as
Bring Your Own Learner (BYOL).

We have demonstrated the framework by integrating five
different learners and deploying them in a massive data-paral-
lel fashion on Amazon EC2. We execute 100 runs per learner,
each with 1% of the data, in as little as one hour. The
employed algorithms are representative of evolutionary com-
putation state-of-the-art. In particular, two of them are highly
validated algorithms provided by external collaborators. We
present results on a publicly available problem composed of
11 million exemplars based upon the Higgs dataset. The
ensemble strategies adopted in this work are promising since
we obtain a competitive performance while aiming at fast
learning. We also analyze the remarkable diversity of the clas-
sifiers trained with the different evolutionary computation
techniques. The goal of such analysis is to determine appro-
priate combinations of learners for future problems that the
framework could encounter.

This project aspires to a commons where new large-scale
problems can be uploaded and quickly solved thanks to a com-
munity-shared repository of learning algorithms and cloud
computing. We encourage the machine learning community to
contribute to the repository of learners and we offer the frame-
work to all others who need a large-scale, supervised machine
learning tool.

Acknowledgments
The authors would like to thank Dr. J. Bacardit, Dr. M. I. Hey-
wood, and R. Smith for contributing their learning algorithms
to the FCUBE framework.

References
[1] P. Huijse, P. Estevez, P. Protopapas, J. Principe, and P. Zegers, “Computational intel-
ligence challenges and applications on large-scale astronomical time series databases,”
IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 27–39, Aug. 2014.
[2] D. Harris, (2012, Aug. 14). How Oxdata wants to help everyone become data scien-
tists. [Online]. Available: http://gigaom.com/2012/08/14/how-0xdata-wants-to-help-
everyone-become-data-scientists/
[3] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griff ith, M. J. Franklin, and M. I. Jordan,
“MLbase: A distributed machine-learning system,” in Proc. 6th Biennial Conf. Innovative
Data Systems Research, 2013.
[4] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
“Graphlab: A new framework for parallel machine learning,”in Proc. 26th Conf. Uncertainty
Artificial Intelligence, Catalina Island, CA, July 8-11, 2010.
[5] (2014). FCUBE. Project website. [Online]. Available: http://f lexgp.github.io/FCUBE
[6] J. Bacardit, P. Widera, A. Márquez-Chamorro, F. Divina, J. S. Aguilar-Ruiz, and N.
Krasnogor. (2012). Contact map prediction using a large-scale ensemble of rule sets and the
fusion of multiple predicted structural features. Bioinformatics [Online]. 28(19), pp. 2441–
2448. Available: http://bioinformatics.oxfordjournals.org/content/28/19/2441.abstract
[7] Y. Zhang and S. Bhattacharyya. (2004, June). Genetic programming in classifying
large-scale data: An ensemble method. Inf. Sci. [Online]. 163(1–3), pp. 85–101. Available:
http://dx.doi.org/10.1016/j.ins.2003.03.028
[8] N. Holden and A. A. Freitas. (2008, Oct.). Hierarchical classif ication of protein func-
tion with ensembles of rules and particle swarm optimisation. Soft Comput. [Online].
13(3), pp. 259–272. Available: http://dx.doi.org/10.1007/s00500-008-0321-0
[9] P. Collet, E. Lutton, M. Schoenauer, and J. Louchet, “Take it EASEA,” in Parallel
Problem Solving From Nature PPSN VI (Lecture Notes in Computer Science, vol. 1917), M.
Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo, and H.-P. Schwefel, Eds.
Berlin Heidelberg, Germany: Springer, 2000, pp. 891–901.
[10] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary algorithms made easy,” J. Machine Learn. Res., vol. 13, pp. 2171–
2175, July 2012.
[11] T. Weise, R. Chiong, J. Lassig, K. Tang, S. Tsutsui, W. Chen, Z. Michalewicz, and X.
Yao, “Benchmarking optimization algorithms: An open source framework for the travel-
ing salesman problem,” IEEE Comput. Intell. Mag., vol. 9, no. 3, pp. 40–52, Aug. 2014.
[12] (2014). Big learning activity. in Proc. EC Big Data Big Learning workshop Held Within
GECCO Conf., [Online]. Available: http://f lexgp.github.io/EC-for-Big-Learning
[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective ge-
netic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, Apr. 2002.
[14] E. Vladislavleva, “Model-based problem solving through symbolic regression via pareto
genetic programming,” Ph.D. dissertation, Tilburg Univ., Tilburg, The Netherlands, 2008.
[15] I. Arnaldo, K. Veeramachaneni, and U. M. O’Reilly, “Building multiclass nonlinear
classif iers with GPUs,” in Proc. Big Learning Workshop NIPS: Advances Algorithms Data
Management, 2013.
[16] J. Bacardit and N. Krasnogor. (2006). Smart crossover operator with multiple parents
for a Pittsburgh learning classif ier system. in Proc. 8th Annu. Conf. Genetic Evolutionary Com-
putation [Online]. pp. 1441–1448. Available: http://doi.acm.org/10.1145/1143997.1144235
[17] M. Franco, N. Krasnogor, and J. Bacardit. (2013). GAssist vs. BioHEL: Critical assess-
ment of two paradigms of genetics-based machine learning. in Soft Computing [Online].
17(6), pp. 953–981. Available: http://dx.doi.org/10.1007/s00500-013-1016-8
[18] J. Bacardit and X. Llorá. (2013). Large-scale data mining using genetics-based ma-
chine learning. in Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery [On-
line]. 3(1), pp. 37–61. Available: http://dx.doi.org/10.1002/widm.1078
[19] P. Lichodzijewski and M. I. Heywood. (2008). Managing team-based prob-
lem solving with symbiotic bid-based genetic programming. in Proc. Annu. Conf.
Genetic Evolutionary Computation [Online]. pp. 363–370. Available: http://doi.acm.
org/10.1145/1389095.1389162
[20] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. (2012). Sym-
biotic coevolutionary genetic programming: A benchmarking study under large attribute
spaces. Genetic Program. Evolvable Machines [Online]. 13(1), pp. 71–101, Available: http://
dx.doi.org/10.1007/s10710-011-9151-4
[21] A. Atwater and M. I. Heywood. (2013). Benchmarking pareto archiving heuris-
tics in the presence of concept drift: Diversity versus age. in Proc. 15th Annu. Conf.
Genetic Evolutionary Computation [Online]. pp. 885–892. Available: http://doi.acm.
org/10.1145/2463372.2463489
[22] R. Smith and M. Heywood. (2014). SBBJ. Project website. [Online]. Available:
http://web.cs.dal.ca/ mheywood/Code/
[23] P. Baldi, P. Sadowski, and D. Whiteson. (2014, July). Searching for exotic particles
in high-energy physics with deep learning. Nature Commun. [Online]. 5(4308), Available:
http://dx.doi.org/10.1038/ncomms5308
[24] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classif ier ensembles
and their relationship with the ensemble accuracy,” Machine Learn., vol. 51, no. 2, pp.
181–207, 2003.
�

